首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A recombinant DNA plasmid, pMHC8, that contains gene sequences for embryonic chick cardiac myosin heavy chain was constructed, identified and characterized. The identity of the clone was established by hybridization with labeled probes that afford screening of MHC22 with high specificity, by inhibition of MHC synthesis in the in vitro hybrid-arrested translation assay, and by tissue-specific hybridization of labeled pMHC8 DNA to MHC messenger RNA.The pMHC8 DNA probe is highly specific for chick heart muscle tissue, since it hybridized poorly to chick skeletal muscle RNA and did not detectably hybridize to adult rat heart RNA. Upon screening the embryonic chick heart cells in culture, no detectable level of MHC mRNA was observed in dividing myoblasts, but the mRNA appeared in differentiated cardiac myocytes paralleling morphogenetic changes in the embryonic cells.  相似文献   

2.
A messenger ribonucleoprotein (mRNP) particle containing the mRNA coding for the myosin heavy chain (MHC mRNA) has been isolated from the postpolysomal fraction of homogenates of 14-day-old chick embryonic muscles. The mRNP sediments in sucrose gradient as 120 S and has a characteristic buoyant density of 1.415 g/cm3, which corresponds to an RNA:protein ratio of 1:3.8. The RNA isolated from the 120 S particle behaved like authentic MHC mRNA purified from chick embryonic muscles with respect to electrophoretic mobility and ability to program the synthesis of myosin heavy chain in a rabbit reticulocyte lysate system as judged by multi-step co-purification of the in vitro products with chick embryonic leg muscle myosin added as carrier. The RNA obtained from the 120 S particle was as effective as purified MHC mRNA in stimulating the synthesis of the complete myosin heavy chains in rabbit reticulocyte lysate under conditions where non-muscle mRNAs had no such effect. Analysis of the protein moieties of the 120 S particle by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows the presence of seven distinct polypeptides with apparent molecular weights of 44,000, 49,000, 53,000, 81,000, 83,000, and 98,000, whereas typical ribosomal proteins are absent. These results indicate that the 120 S particles are distinct cellular entities unrelated to ribosomes or initiation complexes. The presence of muscle-specific mRNAs as cytoplasmic mRNPs suggests that these particles may be involved in translational control during myogenesis in embryonic muscles.  相似文献   

3.
Summary We have found evidence for two beta-like myosin heavy chains in humans, one cardiac and one skeletal. The cDNA sequences of the cardiac beta myosin heavy chain cDNA clone pHMC3 and the skeletal beta-like myosin heavy chain cDNA clone pSMHCZ, were compared to each other. It was found that the 3 untranslated regions as well as 482 nucleotides specifying the carboxyl coding region, were 100% homologous. Further examination revealed that the skeletal clone pSMHCZ diverges from the human cardiac beta myosin heavy chain cDNA clone pHMC3 at the 5 end. We present evidence in this report which indicates that the cardiac beta myosin heavy chain mRNA is expressed in skeletal muscle tissues. The human cardiac beta myosin heavy chain cDNA clone, pHMC3, which codes for a portion of the light meromyosin section of the myosin heavy chain, was used as a probe for S1 nuclease mapping studies with RNA derived from cardiac tissue, smooth muscle and skeletal muscle tissues consisting of fast-twitch, slow-twitch and mixed fast- and slow-twitch muscle fibres. Two probes were used to examine the expression of the mRNA. One probe (406 nucleotides) constitutes the 3 untranslated region and a portion of the coding region of the beta cardiac myosin heavy chain cDNA clone, which is 100% homologous to pSMHCZ, the skeletal cDNA clone. The other constitutes the majority of the coding region (1017 nucleotides) of the cardiac clone pHMC3 in which the first 216 nucleotides from the labelled end are 100% homologous to the skeletal clone pSMHCZ. In the soleus muscle, which is rich in slow-twitch type I muscle fibres, the expression of the cardiac beta myosin heavy chain mRNA was very prominent. In gastrocnemius muscle, a mixed fibre muscle, the expression of this mRNA was detected to a lesser degree than that for the soleus muscle. In vastus lateralis and vastus medialis, which consist of predominantly type II, fast-twitch fibres, there were trace amounts of the cardiac beta myosin heavy chain mRNA. When expression of this mRNA was tested in smooth muscle tissue none could be detected.  相似文献   

4.
A size class of polysomes was isolated from chick embryonic leg skeletal muscle which synthesized almost exclusively a polypeptide chain with a molecular weight identical to the myosin heavy chain. The mRNA purified from these polysomes was shown to synthesize the 200,000 dalton polypeptide in the wheat germ cell-free translation system. At least 90% of the polypeptide had properties similar to the myosin heavy chain. Isoelectric focusing indicated that the myosin heavy chain synthesized in vitro contained two chains in equal amounts, as did purified embryonic leg skeletal muscle myosin. The kinetics of hybridization of the complementary DNA with an excess of the myosin heavy chain mRNA (MHC mRNA) indicated the presence of two different mRNA sequences. Reassociation of the cDNA to an excess of the DNA of the genome suggest that there is little, if any, reiteration of the myosin heavy chain genes.  相似文献   

5.
Summary We have constructed and characterized for the first time a complementary DNA (cDNA) clone, pHMC3, which codes for a cardiac myosin heavy chain mRNA from human heart. This clone contains a 1.7 kb DNA segment and specifies 543 amino acids of the carboxyl portion of the myosin heavy chain. The DNA sequence and encoded amino acid sequence were compared to the hamster alpha (pVHC1) and beta (pVHC2/pVHC3) cardiac myosin heavy chain cDNA and amino acid sequences and the rat cardiac myosin heavy chain sequences as well. The myosin heavy chain mRNAs are highly conserved and this is reflected in our cDNA clone. The pHMC3 clone is 87.9% homologous to the hamster alpha cDNA and 92.2% homologous to the hamster beta cDNA clones. The 3 untranslated region of pHMC3 is 64.1% homologous to the hamster beta clone while the hamster alpha myosin heavy chain shows only 25% homology to pHMC3 and exhibits extensive diversity. Similar results rere obtained when pHMC3 was compared to the rat cardiac myosin heavy chain cDNA sequences. The comparisons showed that pHMC3 is a beta cardiac myosin heavy chain cDNA clone.  相似文献   

6.
P K Umeda  R Zak  M Rabinowitz 《Biochemistry》1980,19(9):1955-1965
Fast and slow myosin heavy chain mRNAs were isolated by indirect immunoprecipitation of polysomes from 14-day-old embryonic chick leg muscle. The antibodies were prepared against myosin heavy chains purified by NaDod-SO4-polyacrylamide gel electrophoresis and were shown to be specific for fast and slow myosin heavy chains. The RNA fractions directed the synthesis of myosin heavy chains in a cell-free translation system from wheat germ. Several smaller peptides were also synthesized in lower concentrations. These probably are partial products of myosin heavy chains, since they are immunoprecipitated with antibodies to myosin heavy chains. Immunoprecipitation of the translation products with the antibodies to fast and slow myosin heavy chains showed the RNA preparations to be approximately 94% enriched for fast myosin heavy chain mRNA and approximately 84% enriched for slow myosin heavy chain mRNA with respect to myosin HC type. Peptides having slightly different mobilities on NaDodSO4-polyacrylamide gels were immunoprecipitated by antibodies to fast and slow myosin heavy chains.  相似文献   

7.
The analysis of a chicken myosin heavy chain cDNA clone   总被引:1,自引:0,他引:1  
A cDNA library has been constructed in the plasmid pBR322 using a large size class of RNA derived from chicken embryonic leg muscle as the template material. A clone containing a 2350-base pair insert was selected and identified as coding for the myosin heavy chain sequence, based upon its ability to hybridize to genomic myosin heavy chain clones, and by direct nucleotide sequencing. Cross-hybridization experiments with myosin heavy chain genomic clones, and mRNAs derived from different muscle types were used to explore the heterogeneity of the various myosin heavy chain isoforms at the level of the coding sequences. Although extensive sequence homology with the other isoforms was observed, a fast white isoform-specific subclone was constructed, and used to demonstrate that different genes code for the adult and embryonic fast white myosin heavy chain proteins.  相似文献   

8.
Using the 3′ noncoding and coding sequences of chick heart myosin light chain mRNA cloned into Escherichia coli as probes, it was observed that, while the coding sequence shared homology with myosin light-chain mRNAs from other sources, the 3′ noncoding sequence was specific for chick heart muscle. This property was used to detect chick heart-specific myosin light-chain gene activity in chick blastoderms of very early developmental stages where cells of different muscle origins cannot be distinguished morphologically. However, in spite of the tissue-specific divergence of the 3′ noncoding sequence of myosin light-chain gene, which is present in a single copy in the chick genome, a surprising homology with DNA from such a diverse source like Dictyostelium discoideum was noted. The sequence homologous to chick myosin light-chain DNA was apparently present in a high repetition frequency in the Dictyostelium genome.  相似文献   

9.
10.
11.
12.
13.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

14.
15.
We have isolated cDNA clones of the mRNA for chick embryonic myosin light chain (MLC), L23, by cross-hybridization with chicken skeletal muscle MLC1 cDNA. The identification of the isolated cDNAs was carried out by in vitro translation of hybrid-selected mRNA. Sequence analysis of the cloned cDNAs revealed that the cDNA insert contained 832 nucleotides and predicted a polypeptide of 185 amino acids with a calculated molecular weight of 20,687. The deduced amino acid sequence for L23 showed high sequence similarities to those of adult alkali type MLCs from various tissues, indicating that L23 belongs to the alkali MLC group. Using the cloned cDNA as a hybridization probe, we have revealed by RNA blot analysis that the expression of L23 mRNA was regulated in temporal and tissue-specific manners. The L23 mRNA of 1.1 kilobases is transiently expressed in embryonic skeletal, cardiac, and smooth muscles of chickens. It is also found in the brain of chickens during all stages of development so far investigated. Only a single gene for L23 was detected by Southern blot of chick genomic DNA. We therefore suggest that L23 is expressed from a single gene in both embryonic muscles and brain.  相似文献   

16.
17.
A cell-free protein synthesis system has been prepared from embryonic chick muscle; this system is dependent on initiation factor eukaryotic initiation factor 3 (eIF-3) and mRNA for efficient translation. Highly purified chick muscle eIF-3 has been fractionated into "core" and discriminatory components. In the presence of core eIF-3 from chick muscle or rabbit reticulocytes, myosin heavy chain mRNA is translated less efficiently than globin mRNA present in an equimolar concentration. When the discriminatory components are added to core eIF-3 from either source, myosin mRNA is translated with a greater efficiency. Thus, chick muscle eIF-3 contains components which allow it to recognize and stimulate specifically the translation of myosin mRNA in a muscle cell-free protein synthesis system.  相似文献   

18.
A cDNA encoding chicken FK506-binding protein 12 (FKBP12) was isolated and sequenced. The predicted amino acid sequence of the chicken protein shows high homology to those of FKBP12 proteins of other species ranging from human to frog. The possible role of FKBP12 in chick embryonic cardiac development was examined. Northern blot analysis revealed that FKBP12 mRNA is distributed widely in chick embryos, being especially abundant in the heart; the amount of FKBP12 mRNA in the embryonic heart decreased with time. Administration of FK506 to chick embryos at 7 to 9 days resulted in marked cardiac enlargement. FK506 also reduced the expression of myosin, induced a more elongated cell morphology, and impaired network formation in cultured chick embryonic cardiomyocytes. These results suggest that FKBP12 is important in the regulation of contractile function and phenotypic expression in chick cardiomyocytes during embryonic development.  相似文献   

19.
The expression of RNA sequences coding for myofibrillar proteins has been followed during terminal differentiation in a mouse skeletal muscle cell line. Cloned complementary DNA probes hybridizing with the actins, skeletal muscle α-actin, myosin heavy chain and the myosin alkali light chains were employed in Northern blotting experiments with total cellular poly (A)-containing RNA extracted from the cultures at different times after plating. At the same times, parallel cultures were pulse-labelled with [35S]methionine and the pattern of newly synthesized proteins was analysed by two-dimensional gel electrophoresis. Synthesis of skeletal muscle α-actin and of the myosin alkali light chains (LClemb, LC1, LC3) was not detectable in dividing myoblast cultures. From the onset of cell fusion, the synthesis of myosin heavy chain, LClemb and α-actin increases with similar kinetics. Synthesis of LC3 (and trace amounts of LC1F) is detectable and subsequently increases at later stages of myotube formation. The corresponding messenger RNAs coding for myosin heavy chain and skeletal muscle α-actin are first detectable immediately before the initiation of myofibrillar protein synthesis. mRNAs coding for the non-muscle actins are accumulated in myoblasts and diminish after cell fusion. Comparisons between muscle mRNAs depend on the relative sensitivities of the different probes, reflecting mainly their homology with the isoform of the actin or myosin multigene family expressed. Quantitative analysis of Northern blots gives an estimated increase in skeletal muscle α-actin mRNA, with an homologous probe, of at least 130-fold with a minimum level of detection of 40 to 80 molecules per cell. Accumulation of this species and of the myosin heavy chain mRNA follows similar kinetics. mRNA coding for LC3, the principal myosin light chain detected with the probe, appears to accumulate to a lesser extent initially, paralleling synthesis of the corresponding protein. These results using cloned probes demonstrate a close temporal correlation between muscle mRNA accumulation and protein synthesis during terminal myogenesis in this muscle line.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号