首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatopancreas of the lobster has recently been found to be a rich source of material from which to isolate arthopod gap junctions biochemically (Finbow et al., 1983a; 1984). It has therefore been studied here to assess the features of these intercellular junctions and any others that may be present, in vivo. The tissue consists of columnar epithelial cells which possess apical microvilli and basal infoldings. In thin sections the lateral borders of these cells are characterized by desmosomes and smooth septate junctions as well as by gap junctions. The desmosomes exhibit no apparent freeze fracture profile but the septate junctions display parallel rows of ridges or aligned intramembranous particles (IMPs) with complementary grooves on the other membrane half; these IMPs shift in their preferential fracturing plane depending on whether the tissue has first been fixed, always remaining on the EF if unfixed. The IMPs or connexons, of which the gap junctions are composed, fracture onto the E face, leaving complementary pits on the P face, regardless of whether the tissue is fixed or not. At the base of the pancreatic cells, the lateral borders are thrown into interdigitating folds which display endocytotic profiles and possible internalization of junction-bearing membranes. This phenomenon, which is readily visualized both after tracer incubation and in replicas, may represent junctional degradation relating to membrane turnover.  相似文献   

2.
Intact follicles as well as defolliculated oocytes of the mouse were studied by freeze-fracture electron microscopy. In intact follicles the oocyte plasma membrane shows two prominent types of intra-membrane particle array:gap junctions and yet undescribed rhombic particle arrays. The gap junctions vary in size (from 5 to 500 IMPs) and shape. Occasionally they are organized in so-called formation plaques. The rhombic particle arrays consist of 25 IMPs on an average, the IMP diameter is 10.5 nm, the mean IMP distance is 19.8 nm and the acute angle in the array is 81.3 degrees. After defolliculation the gap junctions disassemble and change transiently into linear IMP arrays. The rhombic particle arrays persist indicating that they are of a non-junctional nature. The possible function of the rhombic particle arrays is discussed in relation to similar membrane specializations in excitable cells.  相似文献   

3.
In the teleost, Plecoglossus altivelis, intercellular junctions between microvilli of an oocyte and follicle cells were studied by electron microscopy. Microvilli, which were radiated from an oocyte and arrived at the surface of follicle cells, established contact with follicle cells. These contact areas appeared to be a seven-layered membrane with an overall thickness of about 18 microns by standard fixation. In freeze-fracture replicas, many small aggregates of intramembraneous particles were revealed on the cleavage faces of cytoplasmic membranes of follicle cells. These morphological evidences suggest that in the teleost gap junctions exist between the oocyte and follicle cells, especially on the surface of follicle cells.  相似文献   

4.
To study correlation between membrane structure and photoreceptor function, we compared the size and density of intramembrane particles (IMPs) in various membrane compartments of freeze-fractured retinas in a cuttle-fish, Sepiella japonica, and an octopus, Octopus ocellatus. Distribution of gap junctions in the retinas was also examined. Similar results were obtained in the two species. P-faces of both rhabdomeric microvillar membrane and non-rhabdomeric plasma membrane of the apical process were characterized by a random distribution of dense IMPs (ca. 5500-6500/microns2), which showed a unimodal size distribution with a mean diameter of ca. 10 nm. Unlike other invertebrate ocelli, the plasma membrane of the cell body in both the outer and inner segments had significantly denser P-face particles (ca. 7500-8000/microns2) than the rhabdomeric microvillar membrane. The size distribution of IMPs in each part of the membrane was also unimodal, but with a mean diameter of ca. 8 nm. In tangential fractures, each lamella of the myeloid body showed a patchwork of P-faces with irregularly arranged, dense particles and E-faces with orderly patterened granulation. Density and size distribution of the P-face particles in the myeloid membrane resembled those in the rhabdomeric microvillar membrane. The plasma membranes of the supporting cell and the gial cell had relatively sparse P-face particles (ca. 1500-3000/microns2). In addition to the previously reported gap junctions, which connected visual cell inner segments with each other, directly or via collaterals, small gap junctions were found between the visual cell axons and presumed efferent nerve fibres in the plexiform layer. Large-sized gap junctions provided mutual connections for both supporting cells and glial cells. In conclusion, IMPs of 10 nm in mean diameter in the microvillar and non-microvillar parts of the apical process plasma membrane and in the myeloid membrane represent the molecules or their clusters of two photopigments in the cephalopod visual cell, rhodopsin and retinochrome, respectively, and electrical transmission plays a role in visual cell-efferent nerve interactions.  相似文献   

5.
In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.  相似文献   

6.
Developing ovarian follicles of Bacillus rossius have been examined ultrastructurally in an attempt to understand how inception of vitel-logenesis is controlled. Early vitellogenic follicles are characterized by a thick cuboidal epithelium that is highly interlocked with the oocyte plasma membrane. Gap junctional contacts are present both at the follicle cell/oocyte interface and in between adjacent follicle cells. In addition, microvilli of follicle cells protrude deeply into the cortical ooplasm of these early vitellogenic oocytes. With the onset of vitellogenesis, wide intercellular spaces appear in the follicle cell epithelium and at the follicle cell/oocyte interface. Gap junctions become progressively reduced both on the follicle cell surface and on the oocyte plasma membrane. Microvilli from the two cell types no longer interlock. From a theoretical standpoint each of the two structural differentiations present at the follicle cell/oocyte interface—gap junctions and follicle cell microvilli—could potentially trigger inception of vitellogenesis. Gap junctions might permit the passage of a regulatory molecule, transferring from follicle cells to oocyte, which would control the assembly of coated pits on the oocyte plasma membrane. Alternatively cell interaction via microvilli might induce the appearance of coated pits, thus creating a membrane focus for vitellogenin receptors. Both possibilities are discussed in relation to current literature.  相似文献   

7.
The cell contacts between follicle cells, and follicle cells and oocytes of egg-laying populations of Helisoma duryi and non-egg-laying populations of H. trivcolvis have been studied. Scanning electron microscopy reveals that four to six follicle cells envelop a single developing oocyte. Thin sections and lanthanum impregnations demonstrate apical zonulae adherentes followed by winding pleated-type septate junctions between follicle cells. Gap junctions and septate junctions have been found between follicle cells and vitellogenic oocytes. Freeze-fracture replicas show relatively wide sinuous rows of septate junctional particles, and nemerous large gap junctional particle aggregates on the P-face between vitellogenic oocytes and follicle cells. Septate and gap junctions between immature or nonvitellogenic oocytes and follicle cells are fewer compared to those in vitellogenic oocytes. Similarly, the junctional complexes are less developed in non-egg-laying H. trivolvis compared to those in egg-laying H. duryi. It is possible that intimate interaction between follicle cells and a developing oocyte is necessary for the maturation of the oocyte. The junctional complexes could be involved in the interaction of the follicle cells and the oocyte, and they must disassemble at the onset of ovulation. Rhombic particle arrays and nonjunctional ridges of particles have been found in the basal part of the oolemma.  相似文献   

8.
Summary The ultrastructure of the follicle cells during previtellogenesis and early vitellogenesis have been studied. In previtellogenesis follicle cells are columnar with numerous bundles of microtubules located along the lateral plasma membranes. Oocyte-follicle cell gap junctions are not found in this stage. At the onset of vitellogenesis, the bundles of microtubules disappear and are replaced by an apically located ring of microtubules. The modification of microtubular cytoskeleton is not followed by the development of intercellular spaces between the follicle cells. Concurrently, numerous gap junctions are formed between specialized follicle cell processes and oocyte microvilli, which are arranged in characteristic cone-shaped aggregations. It is suggested that cytoskeletal changes and formation of heterologous gap junctions, occurring at the onset of vitellogenesis, are induced by juvenile hormone.  相似文献   

9.
Oocytes grow within ovarian follicles in which the oocyte is coupled to the surrounding granulosa cells by gap junctions. It was previously found that small growing oocytes isolated from juvenile mice and freed of their surrounding granulosa cells (denuded) lacked the ability to regulate their intracellular pH (pH(i)), did not exhibit the pH(i)-regulatory HCO(3)(-)/Cl(-) and Na(+)/H(+) exchange activities found in fully-grown oocytes, and had low pH(i). However, both exchangers became active as oocytes grew near to full size, and, simultaneously, oocyte pH(i) increased by approximately 0.25 pH units. Here, we show that, in the more physiological setting of the intact follicle, oocyte pH(i) is instead maintained at approximately 7.2 throughout oocyte development, and the growing oocyte exhibits HCO(3)(-)/Cl(-) exchange, which it lacks when denuded. This activity in the oocyte requires functional gap junctions, as gap junction inhibitors eliminated HCO(3)(-)/Cl(-) exchange activity from follicle-enclosed growing oocytes and substantially impeded the recovery of the oocyte from an induced alkalosis, implying that oocyte pH(i) may be regulated by pH-regulatory exchangers in granulosa cells via gap junctions. This would require robust HCO(3)(-)/Cl(-) exchange activity in the granulosa cells, which was confirmed using oocytectomized (OOX) cumulus-oocyte complexes. Moreover, in cumulus-oocyte complexes with granulosa cells coupled to fully-grown oocytes, HCO(3)(-)/Cl(-) exchange activity was identical in both compartments and faster than in denuded oocytes. Taken together, these results indicate that growing oocyte pH(i) is controlled by pH-regulatory mechanisms residing in the granulosa cells until the oocyte reaches a developmental stage where it becomes capable of carrying out its own homeostasis.  相似文献   

10.
Freeze fracture and lanthanum tracer experiments have shown that gap junctions exist throughout folliculogenesis between granulosa cells and growing mouse oocytes (Anderson and Albertini, J. Cell Biol.71, 680–686, 1976). The following lines of experimentation in the present study suggest that metabolic cooperativity exists between granulosa cells and their enclosed oocytes, i.e., gap junctions are functional, and that in most cases examined, greater than 85% of the metabolites present in follicle-enclosed oocytes were originally taken up by the granulosa cells and transferred to the oocyte via gap junctions: (1) When incubated with various radiolabeled compounds, follicle-enclosed oocytes contained more intracellular radioactivity than did oocytes with no attached granulosa cells (denuded oocytes); (2) for two radiolabeled ribonucleosides examined, the distribution of phosphorylated metabolites in follicle-enclosed oocytes resembled that of granulosa cells and differed significantly from that in denuded oocytes; (3) pulse-chase experiments with radiolabeled ribonucleosides revealed that during the chase period more radioactivity became associated with the follicle-enclosed oocyte; (4) treatments known to disrupt gap junctions in other cell types were effective in reversibly uncoupling metabolic cooperativity between granulosa cells and oocytes; and (5) a series of control experiments using (a) medium conditioned by granulosa cells and (b) cocultures of denuded oocytes and granulosa cells in which physical contact between the two cell types was not permitted demonstrated that contact between follicle cells and oocytes was necessary for observing metabolic cooperativity. Metabolic cooperativity was also found between follicle cells and oocytes in the two culture systems which support growth of mouse oocytes in vitro. The fact that oocytes do not grow well, if at all, in the absence of follicle cells and the large contribution of nutrients apparently furnished to the oocyte by the granulosa cells is consistent with the concept that gap junction mediated metabolic cooperativity between follicle cells and their enclosed oocytes is vital for mammalian oocyte growth.  相似文献   

11.
Abstract The formation and cytodifferentiation of egg envelopes were studied at the ultrastructural level in blastozooids of Botryllus schlosseri. The process was divided into five recognized stages of oogenesis. First, the small young oocytes (stage 1) are contacted by scattered cells (primary follicle cells—PFC) which adhere to the oolemma at several junctional spots. PFC extend all around the growing oocyte, acquire polarity, and form a layer covered externally by a thin basal membrane (stage 2). At stage 3 isolated cells are recognizable between the PFC layer and oocyte. They never form junctions with the oocyte and represent prospective inner follicle cells (IFC) and test cells (TC), the latter being progressively received in superficial depressions in the oocyte. The layer of PFC, which maintains junctions with the oolemma, represents prospective outer follicle cells (OFC). PFC are considered to be the source of the three cellular envelopes because a contribution from mesenchymatous elements was not observed. At the beginning of vitellogenesis (stage 4), the vitelline coat (VC) becomes recognizable as a loose net covering the oocyte and TC. It is crossed by the oocyte microvilli and OFC projections which meet and form numerous small junctional plaques, some of them resembling gap junctions. IFC, VC and TC show marked signs of differentiation with approaching ovulation. OFC differentiate completely before ovulation (stage 5) and are engaged in intense synthesis of proteins which may be transferred and taken by endocytosis into the oocyte for yolk formation. Experiments with injected horseradish peroxidase also revealed that proteins present in the blood may reach the oocyte via the intercellular pathway, overcoming OFC and IFC. The possible roles of all the egg envelopes are discussed.  相似文献   

12.
13.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

14.
Lanthanum tracer and freeze-fracture electron microscope techniques were used to study junctional complexes between granulosa cells during the differentiation of the rabbit ovarian follicle. For convenience we refer to cells encompassing the oocyte, before antrum and gap junction formation, as follicle cells. After the appearance of an antrum and gap junctions we call the cells granulosa cells. Maculae adherentes are found at the interfaces of oocyte-follicle-granulosa cells throughout folliculogenesis. Gap junctions are first detected in follicles when the antrum appears. In early antral follicles typical large gap junctions are randomly distributed between granulosa cells. In freeze-fracture replicas, they are characterized by polygonally packed 90-Å particles arranged in rows separated by nonparticulate A-face membrane. A particle-sparse zone surrounds gap junctions and is frequently occupied by small particle aggregates of closely packed intramembranous particles. The gap junctions of granulosa cells appear to increase in size with further differentiation of the follicle. The granulosa cells of large Graafian follicles are adjoined by small and large gap junctions; annular gap junctions are also present. The large gap junctions are rarely surrounded by a particle-free zone on their A-faces, but are further distinguished by particle rows displaying a higher degree of organization.  相似文献   

15.
Remarkable differences among various membranes of bone cells became evident by examination of freeze-fracture replicas. In osteoclasts, three types of intramembranous particles (IMPs) were identified based on their size and shape: two sizes of isolated globular particles (8 and 12 nm in diameter) and rod-shaped, linear aggregates (8 x 30 nm in dimension). Furthermore, the density and distribution pattern of these IMPs enabled us to distinguish three different domains of membranes of osteoclasts including ruffled border, clear zone, and basolateral regions, as were also observed in thin sections. The highest density of IMPs was 3,500-4,000/microns2 in the ruffled border membrane, and these IMPs included linear aggregates among the usual globular particles. Linear aggregated particles were also observed in the membrane of cytoplasmic vesicles in the vicinity of the ruffled border region, but not in this membrane in other bone cells. In attached osteoclasts, the distribution patterns and densities of IMPs in each ruffled-finger and -plate were extremely variable, from closely to the loosely packed membrane particles. Focal aggregates of membrane particles were also frequently encountered. An important outcome of the present study was the finding that the presence of linear aggregated particles proved to be an additional criterion for distinguishing membrane domains in freeze-replicas of osteoclasts. The surface of the clear zone membrane was not smooth in profile, but revealed a number of eminences that were almost free of particles. Basolateral membranes exhibited a particle density of 2,400/microns2. Globular particles were homogeneously scattered in random fashion on their exposed fracture faces. In some cases, aggregates of IMPs on the basolateral membranes were encountered. In comparison with the ruffled fingers, microprojections from the basolateral surface showed a lesser density of IMPs and were devoid of rod-shaped or linear aggregated particles. Differences between osteoblasts and osteocytes were apparent in the density and the size of IMPs. The membranes of osteoblasts and osteocytes contained the same types of globular particles as seen in osteoclasts. Various sizes of gap junctions were located only on basolateral membranes of the osteoblasts. In contrast, no cellular junctions were observed between osteoclasts and any other type of cells.  相似文献   

16.
An ovarian follicle of Drosophila consists of an oocyte, 15 nurse cells, and hundreds of follicular epithelial cells. A freeze-fracture analysis of the surfaces between glutaraldehyde-fixed ovarian cells showed that all three cell types were interconnected by gap junctions. This is the first report of gap junctions between adjacent nurse cells, between nurse cells and oocytes, and between follicle cells and oocytes in Drosophila. Since we did not observe intramembranous particle clumping into crystalline patterns and since structurally different gap junctions occurred at different times in development and at different cell-cell interfaces, it is unlikely that fixation artifacts influenced particle distribution in our experiments. A computer-assisted morphometric analysis showed that the extent, size, and morphology of gap junctions varied with development and that these junctions can cover up to 9% of the cell surfaces. To test the role of gap junctions in follicular maturation, we studied ovaries from flies homozygous for the female sterile mutation fs(2)A17, in which follicles develop normally until yolk deposition commences. During the development of mutant follicles, gap junctions became abnormal before any other morphological aspect of the follicle. These studies show that gap junctions are available to play an important role in coordinating intercellular activities between all three cell types in ovarian follicles of Drosophila.  相似文献   

17.
Summary In telotrophic insect ovaries, the oocytes develop in association with two kinds of supporting cells. Each ovary contains five to seven ovarioles. An ovariole consists of a single strand of several oocytes. At the apex of each ovariole is a syncytium of nurse cells (the tropharium), which connects by strands of cytoplasm (the trophic cords) to four or more previtellogenic oocytes. In addition, each oocyte is surrounded by an epithelium of follicle cells, with which it may form gap junctions. To study the temporal and spatial patterns of these associations, Lucifer yellow was microinjected into ovaries of the red cotton bug, Dysdercus intermedius. Freeze-fracture replicas were examined to analyze the distribution of gap junctions between the oocyte and the follicle cells. Dye-coupling between oocytes and follicle cells was detectable early in previtellogenesis and was maintained through late vitellogenesis. It was restricted to the lateral follicle cells. The anterior and posterior follicle cells were not dye-coupled. Freeze-fracture analysis showed microvilli formed by the oocyte during mid-previtellogenesis, and the gap junctions became located at the tips of these. As the microvilli continued to elongate until late vitellogenesis, gap junction particles between them and follicle cell membranes became arranged in long arrays. The morphological findings raise questions about pathways for the intrafollicular phase of the ion currents known to surround the previtellogenic and vitellogenic growth zones of the ovariole.Supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt Differenzierung)  相似文献   

18.
Ultrastructural observations on oogenesis in Drosophila   总被引:4,自引:0,他引:4  
The ultrastructure of the follicle cells and oocyte periplasm is described during the stages of oogenesis immediately prior to, during, and immediately subsequent to, vitellogenesis. A number of features have not been described previously in Drosophila. Some yolk appears prior to pinocytosis of blood proteins. However, most of the protein yolk forms while the periplasm is filled with micropinocytotic invaginations and tubules derived from the oolemma. These tubules retain the internal layer of material characteristic of coated vesicles and are found to fuse with yolk spheres. No accumulation of electron-dense material in the endoplasmic reticulum or Golgi of the oocyte is found. Both trypan blue and ferritin are accumulated by the oocyte. The follicle cells have an elaborate endoplasmic reticulum during the period of maximum yolk accumulation. Adjacent cells are joined at their base by a zonula adhaerens, forming a band around the cells, and by plaques of gap junctions. Gap junctions are also present between nurse cells and follicle cells. During chorion formation, septate junctions also appear between follicle cells, adjacent to the zonula adhaerens.  相似文献   

19.
Each oocyte in the ovary of Acerentomon is surrounded by a layer of follicle cells (FC) and possesses a group of specialized, so-called chorion-producing cells (CPC). The FCs lying immediately under the CPCs form processes which make contact with the oocyte. Gap junctions occur at the points of contact between the oolemma and the membrane of the processes. A possible role of the heterocellular gap junctions in Acerentomon ovary is the coordination of development of the oocyte and CPCs.  相似文献   

20.
Tissues from the epidermis, alimentary tract and notochord of the cephalochordate Branchiostoma lanceolatum have been examined in both thin sections and freeze-fracture replicas to ascertain the nature of the intercellular junctions that characterize their cell borders. The columnar epithelial cells from the branchial chamber (pharynx), as well as from the anterior and posterior intestine, all feature cilia and microvilli on their luminal surfaces. However, their lateral surfaces exhibit zonulae adhaerentes only. No gap junctions have been observed, nor any tight junctions (as are a feature of the gut of urochordates and higher vertebrates), nor unequivocal septate junctions (as are typical of the gut of invertebrates). The basal intercellular borders are likewise held together by zonulae adhaerentes while hemidesmosomes occur along the basal surface where the cells abut against the basal lamina. The lateral cell surfaces, where the adhesive junctions occur, at both luminal and basal borders, do not exhibit any specialized arrangement of intramembrane particles (IMPs), as visualized by freeze-fracture. The IMPs are scattered at random over the cell membranes, being particularly prevalent on the P-face. The only distinctive IMPs arrays are those found on the ciliary shafts in the form of ciliary necklaces and IMP clusters. With regard to these ciliary modifications, cephalochordates closely resemble the cells of the branchial tract of ascidians (urochordates). However, the absence of distinct junctions other than zonulae adhaerentes makes them exceptions to the situation generally encountered in both vertebrates and urochordates, as well as in the invertebrates. Infiltration with tracers such as lanthanum corroborates this finding; the lanthanum fills the extracellular spaces between the cells of the intestine since there are no junctions present to restrict its entry or to act even as a partial barrier. Junctions are likewise absent from the membranes of the notochord; the membranes of its lamellae and vesicles exhibit irregular clusters of IMPs which may be related to the association between the membranes and the notochordal filaments. Epidermis and glial cells from the nervous system possess extensive desmosomal-like associations or zonulae adhaerentes, but no other junctional type is obvious in thin sections, apart from very occasional cross-striations deemed by some previous investigators to represent 'poorly developed' septate junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号