首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of three Calvin cycle enzymes, RuBPc (E.C. 4.1.1.39 [EC] ),3PGA phosphokinase (E.C. 2.7.2.3 [EC] ) and NADP-G3P dehydrogenase(E.C. 1.2.1.13 [EC] ), and the cytoplasmic enzyme PEPc (E.C. 4.1.1.31 [EC] )together with soluble protein and chlorophyll were measuredin extracts from young tomato leaves during acclimation to achange in irradiance. Leaf area and fresh weight were also measuredto show changes due to growth during treatments. Soluble proteinhad doubled on a unit leaf area basis 7 d after transfer from100 µmol quanta m–2s–1 PAR (low light) to400 µmol quanta m–2s–1 PAR (high light). Duringthis period the protein/chlorophyll ratio rose from 4•6to 10, RuBPc activity almost doubled and PEPc almost trebled.Following the reverse transfer from high to low light, solubleprotein decreased by 30% after 7 d and the protein/chlorophyllratio fell from 12 to 5•6. There was no change in RuBPcactivity 3 d after transfer from high to low light while PEPcactivity decreased by over 30%. There was no decrease in theactivity of 3PGA phosphokinase or NADP-G3P dehydrogenase 1 dafter transfer to low light, but decreases were apparent after3 d. The extracted kinase and dehydrogenase when fully activatedwere able to phosphorylate and reduce 3PGA at more than 2•5-foldits calculated rate of synthesis in the leaf. The data are discussedin relation to changes in the CO2 exchange of the leaf. Key words: Photosynthetic acclimation, irradiance, tomato leaf, RuBP carboxylase  相似文献   

2.
This study was designed to examine possible links between polyaminebiosynthesis and effects of growth regulatory compounds. Anauxin (IAA), a cytokinin [benzyladenine; benzylaminopurine (BAP)],an ethylene source (ethephon) and abscisic acid (ABA) were individuallyapplied to terminal buds of excised etiolated or red light (R)-exposedpea epicotyls. Effects were noted on bud fresh weight and onthe two main enzymes of putrescine biosynthesis, arginine decarboxylase(ADC; EC 4.1.1.19 [EC] ) and ornithine decarboxylase (ODC; EC 4.1.1.17 [EC] ).As previously reported [Dai and Galston (1981) Plant Physiol.67: 266], both bud growth and ADC activity are increased byR light. In such buds, ADC is raised further by 1–10 µMBAP or ABA and inhibited by 1–10 µM IAA or ethylene(50 mg/liter or more of ethephon). In all cases, effects ofR-irradiation plus 1 mM growth regulators on ODC activity wasthe inverse of their effects on ADC, indicating independentcontrol of these pathways. These results do not support theview that putrescine biosynthetic activity is correlated withgrowth in etiolated pea seedlings. 1Supported by a grant from NSF to A.W.G. 2Supported by a grant from the Turkish Government. Permanentaddress: Department of General Botany, University of Istanbul,S?leymaniye, Istanbul, Turkey. 3On sabbatical leave from the Department of Horticulture, HebrewUniversity of Jerusalem, Rehovot, Israel. (Received September 22, 1983; Accepted February 28, 1984)  相似文献   

3.
Changes in the activity of cytochrome c oxidase (EC 1.9.3.1 [EC] ,Cyt-oxidase) in response to growth conditions were studied withthe cyanophyte Synechocystis PCC 6714 in relation to changesin PSI abundance induced by light regime for photosynthesis.The activity was determined with the Vmax of mammalian cytochromec oxidation by isolated membranes. The activity of glucose-6-phosphate(G-6-P):NADP+ oxidoreductase (EC 1.1.1.49 [EC] ) was also determinedsupplementarily. Cyt-oxidase activity was enhanced by glucoseadded to the medium even when cell growth maintained mainlyby oxygenic photosynthesis. G-6-P:NADP+ oxidoreductase was alsoactivated by glucose. The enhanced level of Cyt-oxidase washigher under PSII light, which causes high PSI abundance, thanthat under PSI light, which causes low PSI abundance. The levelwas intermediate under hetetrotrophic conditions. Although theactivity level was low in cells grown under autotrophic conditions,the level was again lower in cells grown under PSI light thanunder PSII light. The change of Cyt-oxidase activity in responseto light regime occurred in the same direction as that for thevariation of PSI abundance. Results suggest that in SynechocystisPCC 6714, the capacity of electron turnover at the two terminalcomponents of thylakoid electron transport system, Cyt-oxidaseand PSI, changes in parallel with each other in response tothe state of thylakoid electron transport system. 1Present address: Institute of Botany, Academia Sinica, Beijing100044, China 2Present address: Department of Botany, Utkal University, Bhubaneswar,India 751004  相似文献   

4.
Changes in the metabolic activities of peroxide-producing systemsand peroxide-scavenging systems after freezing and thawing inflower buds of the apple, Malus pumila Mill., were studied withspecial reference to freezing injury. In flower buds of the‘McIntosh’ apple that were frozen below lethal temperatures,the activity of NADH-Cyt c reductase (EC 1.6.99.3 [EC] ), one of theenzymes in the electron-transport chains that are related tothe peroxide-producing systems, decreased slightly, while thatof Cyt c oxidase (EC 1.9.3.1 [EC] ) hardly changed. By contrast, theactivities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49 [EC] ),dehydroascorbate reductase (EC 1.8.5.1 [EC] ) and ascorbate peroxidase(EC 1.11.1.11 [EC] ), which are involved in the peroxide-scavengingsystems, decreased to very low levels. The activity of glyceraldehyde-3-phosphatedehydrogenase (EC 1.2.1.12 [EC] ) also decreased markedly. However,little change was observed in the activities of hexokinase (EC2.7.1.1 [EC] ), glucosephosphate isomerase (EC 5.3.1.9 [EC] ), glutathionereductase (EC 1.6.4.2 [EC] ) and glutathione peroxidase (EC 1.11.1.9 [EC] ).Examination of substrates involved in the peroxide-scavengingsystems revealed that the levels of glucose-6-phosphate andfructoses-phosphate decreased to approximately 10–4 to10–5 M and 10–5 M, respectively, and the levelsof GSH decreased to about 10–5 M or became barely detectable.A decrease in the levels of GSSG also occurred while levelsof ascorbate rose slightly. Similar results were observed withflower buds from ‘Starking Delicious’ and ‘Jonathan’apple trees. These results suggest that the freezing injury to apple flower-budsis closely related to the collapse of the peroxide-scavengingsystems that are coupled with the pentose phosphate cycle. Theresults also suggest that the dysfunction of these peroxide-scavengingsystems is caused by H2O2, which may be produced during freezingand thawing. (Received March 14, 1992; Accepted June 5, 1992)  相似文献   

5.
When tea plants were shaded with black lawn cloth for severaldays in the field, the accumulations of (—)-epicatechin,(—)-epicatechin-3-gallate, (—)-epigallocatechinand (—)-epigallocatechin-3-gallate decreased in newlydeveloping tea shoots. Radioactive tracer studies showed thatthe conversions of glucose-U-14C, shikimic acid-G-14C and phenylalanine-U-14Cinto (—)-epicatechin and (—)-epigallocatechin moietieswere depressed by the shade treatment for tea plants but theincorporation of trans-cinnamic acid-3-14C was not affected.The treatment was found to have no significant effect on theactivities of phospho-2-keto-3-deoxy-heptonate. aldolase (EC.4.1.2.15 [EC] ), 3-dehydroquinate synthase (EC. 4.6.1.3 [EC] ), 3-dehydroquinatedehydratase (EC. 4.2.1.10 [EC] ), shikimate dehydrogenase (EC. 1.1.1.25 [EC] )and trans-cinnamate 4-monooxygenase (EC. 1.14.13.11 [EC] ) in theshoots, whereas the activity of phenylalanine ammonia-lyase(EC. 4.3.1.5 [EC] ) clearly decreased. (Received March 17, 1980; )  相似文献   

6.
D-Glucose-6-phosphate: NADP oxidoreductase (glucose-6-phosphatedehydrogenase; EC 1.1.1.49 [EC] ) and 6-phospho-D-gluconate: NADPoxidoreductase (6-phosphogluconate dehydrogenase; EC 1.1.1.44 [EC] )were found to be present in immature bamboo. Optimal pHs ofthe glucose-6-phosphate- and 6-phosphogluconate dehydrogenaseswere found to be 8.0 and 8.5, respectively. Both enzymes were demonstrated to be NADP-specific and NADPcould not be replaced by NAD. Fructose-6-phosphate was indirectlyutilized after convrsion to glucose-6-phosphate by glucose-6-phosphateisomerase coexisting in the enzyme preparation. Pattern of enzyme activity and of respiratory breakdown of glucose-1-14Cand glucose-6-14C were investigated in connection with lignificationof bamboo and discussed in comparison with sugar metabolismof fungi-infected plant tissues. As for the changes in the enzymeactivity with growth of bamboo, it was recognized that therewas a tendency that the activity of both enzymes increased andwas maintained at a certain level even in the aged tissues.In addition there was a drop of the C6/C1 ratio toward the tissuesof lower parts containing considerable amount of lignin andthis phenomenon was the same as that observed in pentose phosphatemetabolism of fungi-infected plant tissues. (Received September 5, 1966; )  相似文献   

7.
During the growth of leaves of Pisum sativum L., levels of asparaginase(E.C. 3.5.1.1 [EC] ) showed a diurnal variation during a 3 d periodof leaf expansion, increasing in the light and decreasing inthe dark period; the greatest diurnal variation being foundin half-expanded leaves. Asparaginase activity in half-expandedleaves reached a maximum after 4 h exposure to light and thisactivity was maintained over the rest of the light period. Changesin asparaginase activity were not influenced by diurnal temperaturechanges. The increase in asparaginase activity during the lightperiod was directly proportional to the photon flux densityover the range 0–285 µmol m-2 s-1 PAR. The increaseof asparaginase activity during illumination of detached leaveswas inhibited by the photosynthetic electron transport inhibitors3-(3', 4'-dichlorophenyl)-1, 1-dimethylurea (DCMU) and atrazine.These observations indicate that the increase in asparaginaseactivity in half-expanded leaves is dependent upon non-cyclicelectron transport. Key words: Pisum sativum, asparaginase, photosynthetic electron transport  相似文献   

8.
In germinating radish seeds, [U-14C]-4-thiouridine was convertedto 4-thio-UMP, 4-thio-UDP, 4-thio-UTP, 4-thio-UDP glucose and4-thiouracil, of which 4-thiouracil accounted for 60–85%.4-Thio-UTP is incorporated into RNAs of radish seedlings [Shibataet al. (1980) FEBS Lett. 119: 85]. These same metabolites werelabeled following germination of radish seeds with [2-14C]-4-thiouracil.4-Thiouridine was hydrolyzed by the uridine nucleosidase (EC3.2.2.3 [EC] ) of radish seedlings as effectively as was uridine.The activity of uridine nucleosidase was increased by germinationwith 4-thiouridine. These results are a strong indication that4-thiouridine is converted to 4-thiouracil, then to 4-thio-UMPby uracil phosphoribosyltransferase (EC 2.4.2.9 [EC] ). The alternativeformation of 4-thio-UMP from 4-thiouridine by uridine kinase(EC 2.7.1.48 [EC] ) also was suggested. A possible mechanism whichmay cause inhibition of chloroplast biogenesis in 4-thiouridine-culturedseedlings is discussed. (Received October 12, 1981; Accepted January 14, 1982)  相似文献   

9.
Distribution of iron-containing oxidases in aging nodal rootsof rice and wheat was studied. Activities of cytochrome c oxidase(1.9.3.1 [EC] , cytochrome c : O2 oxidoreductase), catalase (1.11.1.6 [EC] ,H2O2: H2O2 oxidoreductase) and peroxidase (1.11.1.7 [EC] , donor:H2O2 oxidoreductase) in wheat roots were comparatively higherthan were those in rice roots at corresponding stages. Cytochromec oxidase in roots remained active throughout the lives of therice and wheat crops. In rice roots, catalase seemed to playa distinct role around the panicle formation stage. Decay ofcatalase activity took place earlier than did that of peroxidaseand cytochrome c oxidase activities. In wheat roots similarenzyme activity changes were not observed. Data may suggestthat the high activity of iron containing oxidases at the panicleformation stage (I) may be chiefly due to catalase activityin rice roots. 1Paper presented at the 14th Annual Meeting of the Society ofthe Science of Soil and Manure, Japan (1968). (Received November 21, 1968; )  相似文献   

10.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

11.
cDNA for an acid invertase (EC 3.2.1.26 [EC] ) of tomato (Lycopersiconesculentum Mill.) fruit was introduced into tomato plants underthe control of the cauliflower mosaic virus 35S promoter inthe antisense orientation. The antisense gene effectively suppressedthe invertase activity in soluble and cell wall fractions fromripening fruits. The sucrose content of fruits of the transformantswas markedly increased, while the hexose content was reduced.These results indicate that acid invertase is one of main determinantsof the sugar composition of tomato fruit. The invertase activityin the cell wall fraction of the leaf tissues of the transformantswas not suppressed to the same extent as that in the solublefraction. Wounding of the control leaf tissues induced invertaseactivity in both soluble and cell wall fractions. The inductionof activity in the soluble fraction was suppressed by the antisensegene, while that in the cell wall fraction was unaffected. Thesefindings suggest that mRNA for some other invertase, in particular,the mRNA for a cell wall-bound invertase, was present in leaves. 1Present address: Plant Breeding and Genetics Research Laboratory,Japan Tobacco Inc., 700 Higashibara, Toyoda, Iwata, Shizuoka,438 Japan. 2Present address: National Institute of Agrobiological Resources,Kannondai, Tsukuba, Ibaraki, 305 Japan.  相似文献   

12.
Phosphoenolpyruvate carboxylase (PEPC) [EC 4.1.1.31 [EC] ] of plantsundergoes regulatory phosphorylation in response to light ornutritional conditions. However, the nature of protein kinase(s)for this phosphorylation has not yet been fully elucidated.We separated a Ca2+-requiring protein kinase from Ca2+-independentone, both of which can phosphorylate maize leaf PEPC and characterizedthe former kinase after partial purification. Several linesof evidence indicated that the kinase is one of the characteristicCa2+-dependent but calmodulin-independent protein kinase (CDPK).Although the Mr, of native CDPK was estimated to be about 100kDa by gel permeation chromatography, in situ phosphorylationassay of CDPK in a SDS-polyacrylamide gel revealed that thesubunit has an Mr of about 50 kDa suggesting dimer formationor association with other protein(s). Several kinetic parameterswere also obtained using PEPC as a substrate. Although the CDPKshowed an ability of regulatory phosphorylation (Ser-15 in maizePEPC), no significant desensitization to feedback inhibitor,malate, could be observed presumably due to low extent of phosphorylation.The kinase was not specific to PEPC but phosphorylated a varietyof synthetic peptides. The possible physiological role of thiskinase was discussed. 1Present address: NEOS Central Research Laboratory, 1-1 Ohike-machi,Kosei-cho, Shiga, 520-3213 Japan. 2Present address: Chugai Pharmaceutical Co., Ltd., 1-135 Komakado,Gotemba, 412-0038 Japan. 4N.O. and N.Y. contributed equally to this work.  相似文献   

13.
It has previously been shown that cotyledonary pricks inducedmodifications of ion levels (H+ and K+) in hypocotyl cells ofBidens pilosa. These modifications differed according to thelight quality: H + levels increased and K+ levels decreasedin white light (WL), whereas H+ levels decreased and K+ levelsincreased in blue light (BL). In this study, in order to determinethe mechanism responsible for these ionic modifications, plasmamembrane vesicles have been isolated and characterized fromhypocotyl cells. The effects of light quality and cotyledonarypricks on plasma-lemma ATPase activity (EC 3.6.1.3 [EC] ) were studied.Cotyledonary pricks induced, in WL, rapid (5 min) and transient(restoration in 60 min) inhibition of plasmalemma ATPase activity.Conversely, in BL, a rapid and transient stimulation was observed.These results suggest that, in Bidens pilosa, plasmalemma ATPaseis involved in 'short-term' ionic level modifications inducedby traumatisms. Key words: ATPase activity, short-term ionic regulation, growth inhibition  相似文献   

14.
Pyruvate, orthophosphate dikinase (EC 2.7.9.1 [EC] ) was activatedin the light and inactivated following a dark treatment in intactmaize mesophyll chloroplasts. Addition of catalase (100–250units/ml) to the assay medium was necessary to obtain good activationand to keep the enzyme in an active state during illumination.Arsenate and carbonyl cyanide m-chlorophenyl-hydrazone, uncouplersof photophosphorylation, inhibited the activation. Pyruvate,which has been proposed to have a critical role in supportingthe light activation of pyruvate, orthophosphate dikinase, actuallyinhibited the activation. The pyruvate level in the chloroplastsuspension decreased when the enzyme was light-activated. Measurementsof adenylates and pyruvate in the chloroplasts indicated thatthe energy state of the chloroplasts was more important forthe light activation than was the level of pyruvate. 1Present address: Department of Biochemistry, Faculty of Science,Saitama University, 255, Shimo-Okubo, Urawa, 338 Japan 2Present address: National Institute of Agrobiological Resources,Yatabe, Tsukuba, Ibaraki, 305 Japan (Received May 2, 1989; Accepted October 2, 1989)  相似文献   

15.
The levels of starch, soluble sugars, starch mobilizing enzymes(amylases and phosphorylase) and sodium [2-I4C] acetate incorporationinto essential oil have been examined during leaf ontogeny oflemongrass (Cymbopogon flexuosus Stapf., cv. OD-19). The degradationof starch was predominantly amylolytic and ß-amylasewas the major enzyme involved. Its activity was quite high duringthe period of active leaf growth accompanying active accumulationof essential oil. The activities of a-amylase and phosphorylasewere relatively lower. The change in starch to soluble sugarsratio was inversely related to ß-amylase activity.The time-course (12 h light followed by 12 h dark) monitoringof the [I4C]-radioactivity in starch and essential oil, afterexposure of the immature (15 days after emergence) leaf to 14CO2,revealed a progressive loss of label from starch and a parallelincrease in radioactivity in essential oil. The results havebeen discussed in relation to degradation of transitory starchserving as the source of carbon precursor for essential oil(monoterpene) biogenesis in the tissue. The amount of exogenouslysupplied acetate incorporated into essential oil increased tremendouslywith 5-10 fold decrease in specific activity of the labelledacetate (2,110 GBq mole–1). The effect was largely manifestedin ‘citral’, the chief (ca. 80%) constituent oflemongrass essential oil. Ontogenetically, the amount of essentialoil synthesized from the exogenously supplied precursor (acetate)was much higher in young (10 days after emergence) than in mature(30 days after emergence) leaf. Thus, the leaf developmentalphase influences the expression of essential oil metabolismand actual synthesis. Only young lemongrass leaves are substantiallyactive to synthesize essential oil. The oil biosynthetic phaseappears to be coordinated/integrated with the development ofelevated levels of certain primary metabolic activities likestarch mobilization. 1CIMAP Publication No. 706 2Present address: CSIR Complex, Palampur-176 061, Kangra Distt.Himachal Pradesh, India J Present address (until October 10, 1991): Department of Biology,Queen's University, Kingston, Ontario, K7L 3N6, Canada (Received November 30, 1990; Accepted May 31, 1991)  相似文献   

16.
Ribulose bisphosphate carboxylase (EC 4.1.1.39 [EC] ) activity wasvery low in tomato leaf extracts unless prepared in the presenceof Mg2+, and polyclar AT. With young leaves, but not with fully-expanded leaves, the RuBP carboxylase activityextracted was increased by prolonged illumination of the leaves(2 h). The main effect of the light treatment was to increasethe specific activity of the enzyme but there was also a smallincrease in RuBP carboxylase protein. Tomato leaf RuBP carboxylasein extracts had specific activities in the range 0.2–0–6µmol CO2 min–1 mg–-1 total protein extracted,or 0.5–1.2 µmol CO2 min–1 mg–1 RuBPcarboxylase, and an apparent Km (CO2) at 20 ?C of 9.3 ? 1.2µM (using a of 6.407). Key words: Tomato leaf, RuBP carboxylase, Properties  相似文献   

17.
The biosynthesis and degradation of carbonic anhydrase (CA;EC 4.3.1.1 [EC] ) was investigated during the course of synchronousculture of the unicellular green alga Chlamydomonas reinhardtii,carried out under a regime of 12 h of light and 12 h of darknesswith bubbling of ordinary air. The enzymatic activity increasedlinearly during the light phase. A coordinate increase in thelevel of the 35-kDa mature CA polypeptide was demonstrated byimmunostaining after poly-acrylamide gel electrophoresis andWestern blotting. Pulse-labeling with [14C]arginine followedby immunoprecipitation showed that the biosynthesis of the CApolypeptide is very active in the early light phase and rapidlydecreases after the middle of the light phase, indicating thatthe bio-synthetic activity does not reflect the quantity ofenzyme protein or the level of enzymatic activity. The 42-kDaprecursor but not the 35-kDa mature polypeptide was synthesizedin the dark. The 35-kDa polypeptide, pulse-labeled at the beginningof the light phase, was gradually degraded throughout the lightphase while it appeard to be stable in the dark. These resultssuggest that the messenger RNA coding for CA is present butits translation is limited in the dark. Normal translation ofmRNA and processing of the precursor to yield the holoenzymemay both require light. 1Present address: Plant Laboratory, Kirin Brewery Co., Ltd.,Kitsuregawa-machi, Shioya-gun, Tochigi-ken, 329-314 Japan. (Received August 22, 1988; Accepted March 9, 1989)  相似文献   

18.
Discs of French bean leaves were vacuum infiltrated with solutionscontaining 14C-labelled substances. The infiltrated discs wereeither transferred immediately to darkness or first illuminatedfor 2 h and then transferred to darkness. After 6 h in darknessthe discs were extracted with buffer containing CO2, Mg2+ andadditional ribulose-1, 5-bisphosphate carboxylase/oxygenase(Rubisco; EC 4.1.1.39 [EC] ). Protein in the extracts was separatedfrom substances of low molecular weight by gel filtration andcoagulated by heating to 100C. Coagulated protein was removedby centrifugation and cations in the supernatant solution wereremoved by ion exchange resin. The non-volatile anions in theresulting solutions, among which was 21-carboxy-D-arabinitol-1-phosphate(CA1P), were separated by HPLC. The amount of CA1P was determinedfrom the signal of a pulsed amperometric detector and its radioactivityby scintillation counting. Vacuum infiltration of [2114C]21-carboxy-D-arabinitol (CA) resulted in 12.6% of the radioactivityin the leaf discs being in CA1P after 6 h in darkness and 21.6%when 2 h light was given before the dark treatment. Where radioactiveglucose, fructose, sucrose, hamamelose, glycerate, glycine oracetate were infiltrated, 14C in CA1P was less than 1% of thetotal present after the dark period with or without a precedingperiod of light. Incorporation of 14C from [14C] CA into CA1Pin darkness was strongly inhibited by 2,4-dinitrophenol andalso to a lesser extent by tentoxin. With both inhibitors themain effect was a decreased uptake of the substrate. Illuminationprior to darkness stimulated the incorporation of radioactivityfrom CA, glycine, glucose, sucrose, and hamamelose into CA1Pin subsequent darkness. Unlike the other substrates, which wereextensively metabolized, CA and hamamelose were converted tofew products; CA was converted almost exclusively to CA1P andCA1P was a major product of hamamelose metabolism. Key words: CA1P, Phaseolus vulgaris, precursors, synthesis  相似文献   

19.
Purification and Properties of Soluble Chlorophyllase from Tea Leaf Sprouts   总被引:1,自引:0,他引:1  
Soluble chlorophyllase (chlorophyll-chlorophyllido-hydrolase,EC 3.1.1.14 [EC] ) was purified 650-fold from tea leaf sprouts byammonium sulfate fractionation and gel filtration through SephadexG-200 and Sepharose CL-6B. The purified enzyme showed two bandson polyacrylamide gel electrophoresis and the specific activitywas 2.6 µmol chlorophyll a hydrolyzed min–1 mg–1of protein. The molecular weights determined by Sepharose CL-6Bwere 910,000 and 350,000, indicating high molecular aggregates.The subunit molecular weight estimated by sodium lauryl sulfate-polyacrylamidegel electrophoresis was 38,000. The isoelectric point was 3.9.The optimum pH was 5.5 in acetate buffer and the Km value forchlorophyll a was 10 µM. This enzyme did not require athiol compound nor metal ion such as Mg2+. (Received January 26, 1981; Accepted April 3, 1981)  相似文献   

20.
NADH-nitrate reductase (NR) (EC 1.6.6.1 [EC] ) activity in the cotyledonsof squash (Cucurbita maxima Duch.) seedlings showed daily variationwhen the seedlings were subjected to an alternating light-darkcycle. When the seedlings were transferred into continuous darkness,NR activity rose at first and then decreased continuously. Irradiationafter continuous darkness induced a rapid increase in NR activity;this light induction of NR activity was inhibited completelyby fumigation with 4 ppm nitrogen dioxide (NO2). This inhibitoryeffect of NO2 was prominent even at 1 ppm and became more pronouncedas the concentration of NO2 increased. NO2 fumigation did notremarkably affect the content of reductant (NADH) in the cotyledons.The results of immunoblotting using anti-NR serum indicatedthat irradiation induced the increase in the NR-polypeptidecontent and NO2 fumigation inhibited the increase, suggestingthat NO2 put an inhibitory effect on the synthesis of NR inducedby irradiation. 4 Present address: College of Environmental Health, Azabu University,Fuchinobe, Sagamihara, Kanagawa 229, Japan 5 Present address: Faculty of Home Economics, Otuma Women'sUniversity, Sanban-cho, Chiyoda, Tokyo 102, Japan (Received October 21, 1987; Accepted January 13, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号