首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Structural studies of homozygous glycophorin AM were undertaken by monitoring the 13C methyl resonances of 13C reductively methylated glycophorin AM (contains five N?,N-[13C]dimethyl Lys residues, and the N-terminal Nα,N-[13C]dimethyl Ser residues) in various forms of glycosylation. The results indicate that removal of the α-d-NeuAc residues does not affect the structure about the N-terminal Ser residue. However, removal of the fifteen O-linked oligosaccharide units results in a structural effect about the N-terminal Ser residue. Partial methylation experiments performed on native glycophorin AM and deglycosylated glycophorin AM indicate that methylation of the lysine residue(s) may influence the structure about the N-terminal Ser residue, especially in the case of deglycosylated AM.  相似文献   

2.
N-terminal Nα-[13C]monomethylamino derivatives for the N-terminal serine and leucine residues of glycophorins AM and AN, respectively, were obtained by reductively 13C-methylating homozygous human erythrocytes (MM, NN). The 13C-labeled glycophorins, AM and AN, were then isolated. A unique structural state was observed in solution reductively 13C-methylated glycophorin AM that was not observed in glycophorin AM derived from 13C-methylated erythrocytes. We attribute this state to the fact that some of the glycophorin AM forms a head-to-head dimer when subjected to reductive 13C-methylation in aqueous solution. The 13C chemical shift data and pH titration data for the N-terminal [13C]dimethylamino and [13C]monomethylamino groups of glycophorin AM and AN derived from reductively 13C-methylated erythrocytes were in agreement with the chemical shift and titration data previously obtained for the N-terminal [13C]dimethylamino groups of solution reductively 13C-methylated glycophorins and related glycopeptides and peptides and N-terminal [13C]monomethylamino groups of related glycopeptides and peptides.  相似文献   

3.
The pH dependence of the labeled-carbon resonances of reductively [13C] methylated compounds tri-l-Ser, glyco-octapeptide AM, asialoglyco-octapeptide AM, glyco-octapeptide AN, asialoglyco-octapeptide AN, and a glycopentapeptide was investigated. The results are discussed relative to those previously observed for reductively [13C]methylated, intact glycophorins AM and AN, and in terms of the mode of display of the MN blood-group specificities by these related glycoproteins. The results indicated that the α-d-NeuAc groups appear to affect the pH-titration results of glyco-octapeptides AM and AN. Moreover, comparison of the pH-titration results for reductively [13C]methylated glyco-octapeptide AM and reductively [13C]methylated asialoglyco-octapeptide AM with those of a reductively [13C]methylated glycopentapeptide and reductively [13C]methylated tri-l-Ser indicated that the other carbohydrate residues present (α-d-GalNAc and β-d-Gal) may also affect the pH-titration results. The reductive-methylation modification appears to affect the chemical shifts of the carbohydrate and peptide carbon atoms of the glycopentapeptide minimally.  相似文献   

4.
The 13C resonances of Nα,N-[13C]dimethylserine of partially 13C reductively methylated glycophorin AM were monitored as a function of pH at 45°C. For comparison, limited data are also presented for the pH dependence of the 13C resonances of Nα,N- [13C]dimethylserine of fully 13C reductively methylated deglycosylated glycophorin AM. The ‘major’ component of Nα,N- [13C]dimethylserine of glycophorin AM did not titrate, whereas the ‘minor’ component titrated with a pKa of 7.80 (Hill coefficient of 0.95). Similar results are also indicated for the Nα,N- [13C]dimethylserine resonances of 13C reductively methylated deglycosylated glycophorin AM.  相似文献   

5.
[S-[13C]methylmethionine-8 and -81]glycophorin A was reconstituted into l-α-phosphatidyl choline vesicles. Results indicate that the S-[13C]methylmethyionine-81 residue in the phospholipid bilayer has limited mobility and is not susceptible to dealkylation, whereas the opposite effects are indicated for the S-[13C]methylmethionine-8 residue.  相似文献   

6.
Gray matter and white matter membranes catalyze the transfer of label from UDP-N-acetyl-[14C] glucosamine into N-acetyl[14C]glucosaminyl-pyrophosphoryl-dolichol, N,N′-diacetyl [14C]chitobiosyl-pyrophosphoryl-dolichol, and N-acetyl[14C]glucosamine-labeled glycoprotein. Gel filtration of the Pronase digests of gray matter N-acetyl[14C]glucosamine-labeled glycoprotein reveals two N-acetyl[14C]glucosamine-labeled glycopeptide fractions. One fraction (A) contains approximately eight glycose units. All of the radioactivity is at nonreducing termini and can be released by treatment with an exo-β-N-acetylglucosaminidase. A smaller N-acetyl[14C]glucosamine-labeled glycopeptide (B) is recovered in the elution volume expected for an asparaginyl disaccharide. Structural studies show that the labeled saccharide unit in glycopeptide B is N,N′-diacetyl[14C]chitobiose. The linkage between the 14C-labeled disaccharide and the polypeptide has the properties of an N-glycosidic attachment to asparagine. Only the larger N-acetyl[14C]glucosamine-labeled glycopeptide (A) is found in Pronase digests of white matter membrane N-acetyl[14C]glucosamine-labeled glycoprotein after incubation with UDP-N-acetyl[14C]glucosamine. When gray matter membranes are incubated with UDP-N-acetyl[14C]glucosamine in the presence of tunicamycin or UMP, the labeling of glycolipid and the asparaginyl disaccharide is inhibited. UMP and tunicamycin have no effect on the transfer of N-acetyl[14C]glucosamine to external acceptor sites of the larger glycopeptide (A). The transfer of N,N′-diacetyl[14C]-chitobiose from carrier lipid to protein is observed when extensively washed membranes containing endogenous, prelabeled 14C-labeled glycolipids are incubated in the presence or absence of unlabeled GDP-mannose. UMP treatment of the prelabeled membranes selectively discharged over 80% of the label from N-acetyl[14C]glucosaminyl-pyrophosphoryl-dolichol, but had no effect on the transfer of the 14C-labeled disaccharide to protein. All of these results are concordant with transfer of N,N′-diacetylchitobiose from dolichyl diphosphate to gray matter glycoprotein. The major membrane glycoprotein labeled by the lipid-mediated [14C]disaccharide transfer reaction has an apparent molecular weight of 24,000. Tunicamycin prevents the enzymatic labeling of the gray matter glycoprotein having an apparent molecular weight of 24,000.  相似文献   

7.
The distribution and metabolism of N-[14C]nitrosodibutylamine were studied in Sprague-Dawley rats. The results indicated that in addition to the liver, metabolism of the substance occurred in the nasal mucosa, the lung and the oesophagus. Metyrapone and diethyldithiocarbamate reduced the production of 14CO2 from N-[14C]nitrosodibutylamine by all these tissues. There was no indication of metabolic capacity in the urinary bladder or the kidney. The results fit with the assumption that tumours of the urinary tract are induced by metabolites reaching these tissues via the urine. Besides the liver, the oesophagus and the lung are target tissues for the carcinogenicity of N-nitrosodibutylamine in Sprague-Dawley rats and in these tissues the local formation of reactive metabolites may play a role in the pathogenesis of N-nitrosodibutylamine-induced lesions.  相似文献   

8.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

9.
Hartmut Wohlrab  James Greaney 《BBA》1978,503(3):425-436
Mitochondria have been prepared from the flight muscles of mature blowflies (Sarcophaga bullata). Phosphate transport by these mitochondria, determined by rates of passive swelling in ammonium phosphate, is sensitive to inhibition by N-ethylmaleimide. 20 nmol of N-ethylmaleimide/nmol cytochrome a inhibit the swelling by 90%. When the mitochondria are inhibited by N-[3H]ethylmaleimide, then solubilized in dodecyl sulfate/mercaptoethanol at 100°C and then electrophoresed on dodecyl sulfate-polyacrylamide gels, many labeled protein bands can be detected, including a large labeled peak that has the same mobility as the tracking dye, bromophenol blue. Sonic submitochondrial particles that are prepared from the N-[3H]ethylmaleimidelabeled mitochondria, solubilized, and electrophoresed on dodecyl sulfatepolyacrylamide gels, possess only seven major labeled protein bands with no radioactive peak at the tracking dye. These labeled proteins have molecular weights of 71, 68, 64, 45, 32, 30, and approx. 10 · 103. The nmol N-[3H]-ethylmaleimide bound to each of these proteins per nmol cytochrome a are 0.15, 0.19, 0.35, 0.45, 0.87, 0.10, and 0.17, respectively, when the mitochondria are inhibited with 21.5 mol N-[3H]ethylmaleimide/mol cytochrome a at 10 μM cytochrome a. Coty and Pedersen ((1975) J. Biol. Chem. 250, 3515–3521) sensitized rat liver mitochondria to N-[3H]ethylmaleimide and identified five labeled proteins. Only the labeled 32 · 103 dalton and the 45 · 103 dalton proteins are common to both systems  相似文献   

10.
[N-13CH3] Phosphatidylcholines are introduced into the outer monolayer of phosphatidylcholine vesicles with the phosphatidylcholine exchange protein from bovine liver. The transbilayer distribution of the [N-13CH3] phosphatidylcholine is measured with 13C NMR. The transbilayer movements of [N-13CH3]-dioleoyl phosphatidylcholine and [N-13CH3] dimyristoyl phosphatidylcholine at 30°C in vesicles composed of these phosphatidylcholines are extremely slow processes with estimated half-times of days. [N-13CH3] Dioleoyl phosphatidylcholine introduced into dimyristoyl phosphatidylcholine vesicles migrates from the outer to the inner monolayer with a half-time of less than 12 h. The data suggest that differential changes in the lateral packing of the two monolayers might be a driving force for transbilayer transport of phospholipids.  相似文献   

11.
A chromatographic procedure for improved separation of deoxyribonucleosides and methylated deoxyribonucleosides is described. DNA was isolated from liver and small intestine of rats treated with [14C]dimethylnitrosamine ([14C]DMN) or N-[3H]methyl-N-nitrosourea ([3H]MNU), and the purified DNA was hydrolyzed enzymatically. The deoxyribonucleosides were chromatographed on an Aminex A-6 cation exchange column at 37°C with 0.4 M ammonium formate, pH 4.5, as eluant. In addition to showing the presence of the expected alkylated products, N7-methyldeoxyguanosine (determined as N7-methylguanine) and O6-methyldeoxyguanosine, several other minor methylated products were found in liver and intestinal DNA of rats treated with DMN or MNU. Two of these products are believed to be N3-methylthymidine and O4-methylthymidine.  相似文献   

12.
Commercial [5-14C]mevalonate is shown to contain several radioactive impurities, which give artifactually high amounts of Hyamine bound, volatile acidic radioactivity when incubated with killed or living rat renal cortex slices, as compared with [5-14C]mevalonate purified either by liquid-liquid partition chromatography or through the enzymically generated R-5-phospho-[5-14C]mevalonate by ion-exchange chromatography. The artifactual 14CO2 results were not diluted by incubation with increasing amounts of unlabelled mevalonate, whereas the 14CO2 and [14C]cholesterol produced by rat renal cortex slices incubated with purified [5-14C]mevalonate were both diluted to the same extent by unlabelled mevalonate. It is concluded that R[5-14C]mevalonate is genuinely oxidized to 14CO2invitro, and that purification of substrate before its use is necessary. Production of 14CO2 and various [14C]lipids from purified [5-14C]mevalonate, as a function of time and substrate concentration, by renal cortex and liver slices, is described.  相似文献   

13.
Antranilate N-acetlytransferase, which is a constitutive enzyme, is responsible for the formation of N-acetylanthranilic acid which accumulated int he culture medium of certain mutants of Aerobacter aerogenes. It has been shown to be dissimilar to serine O-acetyltrasferase and not to be involved in the acetylation of a variety of aliphatic compounds. Aniline and m-aminobenzoic acid are, however, readily acetylated, the Km for the latter compound being the same as that for anthranilic acid, 13 mM. p-Aminobenzoic acid is only slowly acetylated and salicylic acid only acted as an inhibitor of the reaction. N-[3H]Acetyl[1,7-14C2]anthranili acid was prepared but could not be shown to be deacylated for further metabolized when administered to any whole cell, cell extract or toluene-lysed cell preparation.  相似文献   

14.
[14C]Guanidine was observed in the urine after subcutaneous administration to rats of l-[guanidino-14C]arginine or l-[guanidino-14C]canavanine. [14C]Hydroxyguanidine was additionally detected in the urine after injection of dl-[guanidino-14C]canavanine. These 14C metabolites were characterized by high-voltage electrophoresis and paper chromatography, by enzymatic conversion of [14C]hydroxyguanidine to [14C]guanidine, and by repeated recrystallization of isolated urinary [14C]guanidine as the picrate salt with no significant loss of specific activity. These experiments demonstrate that both l-arginine and l-canavanine can serve as precursors of guanidine in the rat.  相似文献   

15.
A doubly labeled 3-ketoceramide, [1-14C] lignoceroyl [1-3H2] 3-ketosphingosine (3H14C ratio, 3.61) was injected into the left ventricle of rat heart. The ceramide isolated from the livers of the animals after 1 hr incubation contained an equal 3H>14C ratio of 3.60. This finding strongly supports the existence for direct conversion of 3-ketoceramide to ceramide in rat liver.  相似文献   

16.
Human embryonic, fetal, and adult globin chains (ζ, ε, Aγ, Gγ, β, α) can be separated by electrophoresis on Triton Acid urea gels. K562, a human leukemia cell line, was induced with hemin, labelled with [3H]-leucine, and globin synthesis analyzed. All globins except β were produced. ε > ζ; Gγ:Aγ=70:30; non-α:α=>2:1. Thus, hemin-induced K562 synthesized embryonic and fetal globin chains, and had globin synthetic imbalance, with “α-thalassemia.”  相似文献   

17.
Labeled oligonucleotides have been fractionated from pancreatic DNase digests of DNA that had been methylated in vitro with the P1 modification enzyme (M·Eco P1) or with the DNA-adenine methylase (M·Eco dam) controlled by the Escherichia coli dam gene. The sequences of methylated oligonucleotides were established for M·Eco dam modification of calf thymus DNA. The results show that M·Eco dam inethylates adenine residues contained in the twofold symmetrical sequence, 5′ … G-A-T-C … 3′. The sequence for the site methylated by M·Eco P1 has also been deduced; we propose that M·Eco P1 modification produces the following methylated pentameric sequence: 5′ … A-G-A1-C-Py … 3′ (where A1 = N6 methyladenine and Py is C or T).  相似文献   

18.
The in vitro reaction of bacteriophage T7-DNA with the radioactive diastereomeric benzo(a)pyrene-diol-epoxides, (±) [3H9, 3H10]-7β,8α-dihydroxy-9α,10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and (±) [3H9, 3H10]-7β,8α-dihydroxy-9β,19β-epoxy-7,8,9,10-tetrahydrobenzo(1)pyrene, was investigated. Chromatographic analysis of digests of the DNA allowed the distinction of characteristic deoxynucleoside adduct peaks for the two benzo(a)pyrene-diol-epoxides. Our results, together with data from the literature, allow the identification of these adducts as mostly N2-(10-7β,8α,9α-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine and N2-(10-7β,8α,9β-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine, respectively. DNA-benzo(a)pyrene adducts with the same chromatographic properties were formed in mouse embryo fibroblasts upon treatment with benzo(a)pyrene.  相似文献   

19.
Oxidative cleavage of aromatic compounds is often part of a degradative process and is widely observed in nature. The immediate catabolic products can sometimes cyclize or rearrange to new secondary metabolites. The enzymatic contraction of a dehydroisocoumarin to yield cyclopentenoid metabolites in Cryptosporiopsis sp. is reported. The label distribution of (+) cryptosporiopsin, a chlorinated cyclopentenone, was determined by analysis of the [13C]nmr of [1-13C] and [2-13C]acetate enriched-cryptosporiopsin. The putative aromatic precursor of cyclopentenoid metabolites, 2,3-dihydro-6,8-dihydroxy-2-methylisocoumarin (6), was isolated from Aspergillus terreus. This metabolite (6) was prepared doubly labeled (T14C). The aromatic origin of the Cryptosporiopsis chlorinated cyclopentenoid metabolites was rigorously proven from feeding experiments with doubly labeled compound 6. A related but nonchlorinated metabolite, terrein, was isolated from A. terreus and was also shown to be derived from [T14C]-2,3-dihydro-6,8-dihydroxy-2-methylisocoumarin.  相似文献   

20.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10?8 M and was half-maximal at 7.9±3.4·10?7M. The increase at 1·10?5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10?9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10?5 M dopamine was 2.3±0.9·10?6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10?7M and 4.7±1.6·10?7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10?6Mcis-flupenthixol, 2.7±0.4·10?5Mtrans-flupenthixol, >1·10?5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号