首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The muscles of the male abdomen and genitalia of Micropezidae were studied for the first time by the example of Neria commutata (Czerny, 1930). Based on analysis of the sclerites and musculature of the male genitalia of Micropezidae as compared to those of the previously studied Acalyptratae and Aschiza, we revealed several apomorphies of this group. The hypandrial complex is characterized by the presence of the phallic retractors and protractors M1 and M2, and the epandrial complex, by the presence of muscles M3 of the subepandrial sclerite, muscles M4 of the surstyli, muscles M7 of the cerci, and also the tergosternal muscles M5; all these muscles correspond to the ground plan of Cyclorrhapha. The following characters are considered apomorphic: the splitting of intersegmental sternal muscles ISM5–6 into 4 pairs that ensure the functioning of the forcipate appendages of sternite V; development of syntergosternite VII and reduction of muscles ISM6–7; the splitting of muscles M3 of the subepandrial sclerite into 4 pairs, enhancing the function of this sclerite; the appearance of pregonites with the associated muscles M42, which probably occurred independently several times in the evolution of different groups of Cyclorrhapha; asymmetry of syntergosternites VII and VIII and their muscles. The sclerites and muscles of the epandrium and hypandrium are characterized by complete symmetry.  相似文献   

2.
The larva, deutonymph, female, and male of a new water mite species, Georgella samaraensis, are described and illustrated. Larvae of Georgella are similar to larvae of the genus Hydryphantes, differing in the following characters: basal cheliceral segments have no longitudinal ribs, dorso-distal prominences of the pedipalpal tibia are undeveloped, and the excretory pore is partly surrounded by the anal sclerite. The larva known as G. koenikei (Münchberg, 1936) is erroneously treated as a larva of fresh-water Georgella (Hydrachnidia). The morphology of all the active developmental phases of Georgella strongly differs from that in mites of the genus Hydryphantes. Therefore, the generic status of Georgella should be restored.  相似文献   

3.
In several surveys in the tropical forests in Thailand, specimens that looked morphologically similar to Metarhizium martiale and Cordyceps variegata, as well as other Metarhizium species were collected and cultured in vitro. A combined phylogeny of several genes including the small (18S) and large (28S) subunits of the ribosomal DNA, elongation factor 1-α (TEF), RNA polymerase II subunits 1 and 2 (RPB1, RPB2) genes has shown these to be new taxa in the Clavicipitaceae. Nigelia is described as a new genus closely related to Metarhizium, to the scale insect pathogens Aschersonia (Hypocrella), Samuelsia and Moelleriella, and to plant pathogens in Claviceps and Balansia, and other relatives. Nigelia comprises M. martiale and a new species Nigelia aurantiaca, which has been found infecting lepidopteran larvae and which produces pseudoimmersed, obliquely arranged, obpyriform perithecia with curved or bent ostioles and with whole (non-separating) cylindric ascospores. Metarhizium chaiyaphumense, M. kalasinense, M. prachinense, M. samlanense, and M. takense are described as new species of Metarhizium. Metarhizium martiale is transferred to Nigelia, and Paecilomyces reniformis is transferred to Metarhizium.  相似文献   

4.
Environmental sampling yielded two yeast species belonging to Microstromatales (Exobasidiomycetes, Ustilaginomycotina). The first species was collected from a leaf phylloplane infected by the rust fungus Coleosporium plumeriae, and represents a new species in the genus Jaminaea, for which the name Jaminaea rosea sp. nov. is proposed. The second species was isolated from air on 50% glucose media and is most similar to Microstroma phylloplanum. However, our phylogenetic analyses reveal that species currently placed in Microstroma are not monophyletic, and M. phylloplanum, M. juglandis and M. albiziae are not related to the type species of this genus, M. album. Thus, Pseudomicrostroma gen. nov. is proposed to accommodate the following species: P. glucosiphilum sp. nov., P. phylloplanum comb. nov. and P. juglandis comb. nov. We also propose Parajaminaea gen. nov. to accommodate P. albizii comb. nov. and P. phylloscopi sp. nov. based on phylogenetic analyses that show these are not congeneric with Jaminaea or Microstroma. In addition, we validate the genus Jaminaea, its respective species and two species of Sympodiomycopsis and provide a new combination, Microstroma bacarum comb. nov., for the anamorphic yeast Rhodotorula bacarum. Our results illustrate non-monophyly of Quambalariaceae and Microstromataceae as currently circumscribed. Taxonomy of Microstroma and the Microstromataceae is reviewed and discussed. Finally, analyses of all available small subunit rDNA sequences for Jaminaea species show that J. angkorensis is the only known species that possess a group I intron in this locus, once considered a potential feature indicating the basal placement of this genus in Microstromatales.  相似文献   

5.
Two new species of Metarhizium, M. bibionidarum and M. purpureogenum are described from Japan. Metarhizium bibionidarum is the phylogenetic sister species of M. pemphigi and a member of the M. flavoviride species complex. It is distinguished morphologically from M. pemphigi by its larger conidia. The species is based on a collection of an infected March fly larva (Diptera: Bibionidae) but is also known to occur on fruit beetle (Coleoptera: Scarabaeidae) encountered in France. Metarhizium purpureogenum was isolated from soil by plating and insect baiting methods and represents a unique phylogenetic lineage placed outside the M. anisopliae and M. flavoviride species complexes. Three isolates of M. purpureogenum excreted a distinctive red-purple pigment into agar medium when co-cultured with M. robertsii or Aspergillus oryzae.  相似文献   

6.
Micropleura huchzermeyeri n. sp. (Camallanida: Dracunculoidea: Micropleuridae) is described from the peritoneal cavity of Crocodylus niloticus Laurenti (Reptilia: Crocodylidae), based on a detailed study of its morphology using light and scanning electron microscopy. The new species is compared with its congeners, M. australiensis Moravec, Kay & Hobbs, 2004, M. vazi Travassos, 1933 and M. vivipara von Linstow, 1906 from crocodilians, and with M. indica Khera, 1951 from chelonian hosts. It can be distinguished from these by the length of its spicules, which are longer than in all described species and a combination of characters, including the presence of prominent lateral caudal papillae on the level of the cloaca in males, the presence of conspicuous phasmids on the female tail, the pre-equatorial position of the vulva and the length of the first-stage larvae. Micropleura huchzermeyeri n. sp. is further characterised by having 14 cephalic papillae in both sexes and ten pairs of caudal papillae in males. This is the first report of a representative of the genus Micropleura von Linstow, 1906 from a crocodilian in the Afrotropical region. Micropleura helicospicula Dey Sarkar, 2003 is considered a species incertae sedis.  相似文献   

7.
Microchelonus species of the M. retusus group differ from the other members of the subgenus Microchelonus s. str. (characterized primarily by the 16-segmented female antennae and deepened apical abdominal opening of the male) in their elongate carapace of female abdomen more strongly narrowed apically than toward base. The first key to 45 species of this group, including 7 new species, is given: M. alexeevi Tobias, 1986 (apicalis Alexeev, 1971); M. angustiventris Tobias, 1986; M. apicalis Papp, 1971; M. arnoldii (Tobias, 1964); M. artus Tobias, 1986; M. cisapicalis Tobias, 1989; M. crassitarsus Tobias, 1989; M. dolosus Tobias, 1989; M. elenae Tobias, 1995; M. erosus Herrich-Schaeffer, 1838 (analipennis Fahringer, 1934; hungaricus Szépligeti, 1896; frivalaldszkyi Shenefelt, 1973); M. heraticus Tobias, 1985; M. hofferi Tobias et Lozan, 2006; M. jonaitisi Tobias, 2000; M. justus Tobias, 1989; M. kievorum sp. n. (Ukraine); M. kiritshenkoi (Tobias, 1976); M. klugei Tobias, 2001; M. kopetdagicus (Tobias, 1966) (caucasicus Abdinbekova, 1967, syn. n.); M. korinthiacus sp. n. (Greece); M. kozlovi (Tobias, 1961); M. longirimosus Tobias, 1995; M. madridi sp. n. (Spain); M. marshakovi Tobias, 1986; M. mediterraneus sp. n. (Greece); M. microphthalmus (Wesmael, 1838) (dilatus Papp, 1971); M. mikhaili Tobias, 1989; M. mirabilis (Tobias, 1972); M. morrocanus sp. n. (Morocco); M. nachitshevanicus (Abdinbekova, 1971); M. ononicus Tobias, 2000; M. pamiricus (Voinovskaya-Kriger, 1928); M. retrusus Tobias, 1989; M. retusus (Nees, 1813) (caudatus Thomson, 1874); M. stenogaster Tobias, 1995; M. sternaus (Tobias, 1964); M. subcaudatus (Tobias, 1971); M. subjustus sp. n. (Spain); M. sulcatus Jurine, 1908 (rimulosus Thomson, 1874; rimatus Szépligeti, 1896); M. tersakkanicus Tobias, 2001; M. tjanshanicus Tobias, 1995; M. turcius sp. n. (Turkey); M. volgensis Tobias, 1986; M. xenia Tobias, 2000; M. zorkuli Tobias, 1991.  相似文献   

8.
It is rather difficult to construct a system of gray voles of the tribe Microtini by a set of morphological and karyological characters because form generation is mosaic at these organization levels. The sequence of the mitochondrial cytochrome b gene was used to study the phylogenetic relationships and taxonomic position of the Central Asian subgenus Blanfordimys. Afghan vole Microtus (Blanfordimys) afghanus and Bucharian vole M. (Blanfordimys) bucharensis clustered with Pamir vole M. (Neodon) juldaschi, which is conventionally assigned to another subgenus. The last two species proved to be significantly closer to each other than either of them was to M. (Blanfordimys) afghanus, which disagrees with the monophyletic origin accepted for Blanfordimys. The genetic distances between the species of the subgenus Blanfordmys and M. juldaschi were comparable with the distances between the sister subgenera Microtus s. str. and Sumeriomys or Pallasiinus and Alexandromys and with the basal divergence of supraspecific clades in the subgenus Terricola. It was assumed that a special Central Asian group of species exists within the tribe Microtini and includes species of the subgenus Blanfordimys and M. juldaschi and that the subgenera Neodon and Blanfordimys should be revised.  相似文献   

9.
Originally described as a monotypical genus with unclear taxonomic position from Sudan, Meroctenus Gemminger et Harold, 1868 is treated as a polytypical genus of the Selenophori genus group with two subgenera: Meroctenus s. str. and Xenodochus Andrewes, 1941, stat. n. (the latter was previously considered a distinct genus). Within Meroctenus, two species are recognized: M. (Meroctenus) crenulatus Chaudoir, 1843 (type species) and M. (M.) mediocris (Andrewes, 1936), comb, n., transferred to Meroctenus s. str. from Xenodochus. A new subspecies M. (M.) crenulatus orientalis subsp. n. is described from Pakistan. Diagnoses of the genus Meroctenus in new interpretation as well as of its two subgenera are discussed, and a taxonomic review of the subgenus Meroctenus s. str. with a key to the species and subspecies is provided. The following synonymy is proposed: Meroctenus Gemminger et Harold, 1868 = Paregaploa Müller, 1947, syn. n.; Meroctenus crenulatus (Chaudoir, 1843) = Egaploa (Paregaploa) conviva Müller, 1947, syn. n. Lectotypes are designated for Ctenomerus crenulatus Chaudoir, 1843 and Xenodus mediocris Andrewes, 1936.  相似文献   

10.
The hybrid origin of Miscanthus purpurascens has previously been proposed, primarily because of its intermediate morphology. In this study, phylogenies based on the DNA sequences from the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS), on the DNA sequences of the trnL intron and trnL-F intergenic spacer of chloroplast DNA, and on amplified fragment length polymorphism (AFLP) fingerprinting confirm that M. purpurascens originated through homoploid hybridization between M. sinensis and M. sacchariflorus. Two different types of ITS sequences were identified from almost all plants of M. purpurascens. One type was found to be closely related to M. sinensis and the other to M. sacchariflorus. Miscanthus purpurascens was found to possess many M. sinensis- and M. sacchariflorus-specific AFLP bands but no band specific to itself. Clustering with the Unweighted Pair Group Method with Arithmetic Mean and principal coordinate analysis based on the AFLP data also demonstrated that M. purpurascens is an approximate intermediate of the two species. In addition, M. purpurascens has the plastid genome of M. sinensis or M. sacchariflorus, suggesting that either species could be its maternal parent. All specimens of M. purpurascens and its coexisting parental species are identified as diploids (2n = 2x = 38). Possible mechanisms of natural hybridization, hybrid status, chloroplast DNA recombination, and evolutionary implications of this hybridization are also discussed.  相似文献   

11.
12.
The morphology of female genitalia is described for eight species of the genus Mellicta belonging to the M. aurelia species group from different localities within their ranges. The distinctive features, their variability, and possible use for species identification are assessed. It is shown that some characteristics of female genitalia can be used to clarify the position of species within the genus and, in some cases, to outline the species groups. Keys to species of the aurelia group are given.  相似文献   

13.
Four new species of Mariannaea were described in this paper, namely M. chlamydospora, M. cinerea, M. fusiformis, and M. lignicola. Mariannaea chlamydospora is characterized by its cream-colored, zonate colonies on PDA, smooth conidiophores, fusiform conidia, and abundant chlamydospores. Mariannaea cinerea forms grey colonies and ellipsoidal to subglobose conidia. Mariannaea fusiformis forms purple colonies and fusiform to subglobose conidia. Mariannaea lignicola has brown conidiophores and broad hyphae. The molecular phylogeny was inferred using ITS, LSU, and TUB-2 loci. The type species of Mariannaea (M. elegans) is epitypified. The variety M. elegans var. punicea is raised to species rank. Mariannaea clavispora is excluded from Mariannaea because of its cylindrical phialides, straight conidial chains and deviating phylogenetic affinity. Mariannaea nipponica did not fit well the generic concept of Mariannaea based on their morphological characters, and its generic placement remains uncertain. A key to the currently accepted 15 species of Mariannaea is provided.  相似文献   

14.
15.
Three new species of the genus Mycterodus Spinola are described: M. phoenicicus sp. n. from Lebanon and M. syriacus sp. n. from Syria, both belong to the subgenus Aegaeum Gnezdilov, and M. marki sp. n. from Turkey, belongs to the subgenus Aconosimus Dlabola. Figures of the described species and of the holotype of M. anaticeps Puton are given. M. efesicus Dlabola is for the first time recorded from Greece (Samos I.); M. alatus Logvinenko, M. caucasicus (Melichar), and M. johannesi Gnezdilov &; Drosopoulos are new to the fauna of Turkey.  相似文献   

16.
The present study evaluates the phylogenetic position and systematic relationships of two species of Mosgovoyia Spasskii, 1951 and related genera (Cestoda: Anoplocephalidae) based on sequences of 28S ribosomal RNA and mitochondrial NADH dehydrogenase subunit 1 (Nad1) genes. Both molecular data-sets show that M. pectinata (Goeze, 1782) and Schizorchis caballeroi Rausch, 1960 are sister species and that they are phylogenetically independent from M. ctenoides (Railliet, 1890). This shows unambiguously that Mosgovoyia [sensu Beveridge (1978)] is a non-monophyletic assemblage, supporting the validity of Neoctenotaenia Tenora, 1976, erected for M. ctenoides. The results also show that the morphologically related Ctenotaenia marmotae (Fröhlich, 1802) is the sister species of Andrya rhopalocephala (Riehm, 1881) and therefore represents a more derived lineage. Modified diagnoses are provided for Mosgovoyia and Neoctenotaenia.  相似文献   

17.
18.
19.
Occurrence and diversity of dermatophyte mycoflora in 298 soil samples from Ahvaz, Southwest of Iran was investigated by using the hair-baiting technique. The samples were collected during spring (n = 210) and autumn (n = 88) of 2015, and the fungal isolates were identified based on the macro- and micro-morphology of colonies and with further ITS-rDNA RFLP and sequencing. Totally, 60 soil samples (20.1%) were positive for dermatophyte growth whose pH varied from 7.0 to 7.9. The highest (26.6%) and the lowest (14.3%) recovery rates were from the animal resorts and the streets soils samples, respectively. Seasonally, 16.7% of the spring samples and 28.4% of the autumn samples were positive. Based on molecular identification, three species of two genera were identified viz. M. fulvum (n = 57), M. canis (n = 2) and zoophilic Trichophyton interdigitale (n = 1). As a specific goal in the study, differentiation of the species in Microsporum gypseum complex was established by measuring the mean length and width of macroconidia in some strains of M. gypseum, M. fulvum and M. incurvatum. Mean size for macroconidia length and width in three species showed that M. gypseum and M. incurvatum can morphologically be differentiated from M. fulvum but not from each other. M. fulvum was the most abundant species isolated from the soils of Ahvaz; however, to comprehensively specify the distribution pattern of geophilic dermatophytes in the soils of this city further investigations are needed. Identification based on micro-morphometric is not effective for species distinction in M. gypseum complex, while molecular procedures based on sequencing of certain DNA regions are the most reliable and applicable strategies for this purpose.  相似文献   

20.

Background

The genus Micronycteris is a diverse group of phyllostomid bats currently comprising 11 species, with diploid number (2n) ranging from 26 to 40 chromosomes. The karyotypic relationships within Micronycteris and between Micronycteris and other phyllostomids remain poorly understood. The karyotype of Micronycteris hirsuta is of particular interest: three different diploid numbers were reported for this species in South and Central Americas with 2n?=?26, 28 and 30 chromosomes. Although current evidence suggests some geographic differentiation among populations of M. hirsuta based on chromosomal, morphological, and nuclear and mitochondrial DNA markers, the recognition of new species or subspecies has been avoided due to the need for additional data, mainly chromosomal data.

Results

We describe two new cytotypes for Micronycteris hirsuta (MHI) (2n?=?26 and 25, NF?=?32), whose differences in diploid number are interpreted as the products of Robertsonian rearrangements. C-banding revealed a small amount of constitutive heterochromatin at the centromere and the NOR was located in the interstitial portion of the short arm of a second pair, confirmed by FISH. Telomeric probes hybridized to the centromeric regions and weakly to telomeric regions of most chromosomes. The G-banding analysis and chromosome painting with whole chromosome probes from Carollia brevicauda (CBR) and Phyllostomus hastatus (PHA) enabled the establishment of genome-wide homologies between MHI, CBR and PHA.

Conclusions

The karyotypes of Brazilian specimens of Micronycteris hirsuta described here are new to Micronycteris and reinforce that M. hirsuta does not represent a monotypic taxon. Our results corroborate the hypothesis of karyotypic megaevolution within Micronycteris, and strong evidence for this is that the entire chromosome complement of M. hirsuta was shown to be derivative with respect to species compared in this study.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号