首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 –CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325) and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene)-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications.  相似文献   

2.
Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-l-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5′-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster''s endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products.  相似文献   

3.
Sponges present a wide variety of metabolites, and are considered one of the hotspots in research on the chemistry of natural products. Sterols from sponges have received attention because they present patterns of branches that distinguish them from all other living organisms. Freshwater sponges, native to rivers and lakes, have been studied chemically throughout the world, but there have been no studies on sponges from the Amazon region. The present work describes the sterols present in freshwater sponges collected in Anavilhanas, the world's second largest river archipelago, in the Negro river (Amazonas-Brazil), focussing on species whose family has not been studied previously in regard to their chemistry of natural products. Using a set of derivatization reactions for identification by chromatographic and spectrometric techniques, it was observed that the steroid extracts of sponges of the species Metania reticulata, Drulia browni and Drulia uruguayensis (Metaniidae) present 24-ethyl-cholest-5,22-dien-3β-ol as the principal sterol. Cholesterol, the main sterol in Spongillidae and Lubomirskiidae, was already detected but as a minor component along with three other sterols.  相似文献   

4.
《New biotechnology》2015,32(6):658-664
Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products (“artificial metabolisms”) by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed.  相似文献   

5.
Nucleoside derivatives, in particular those featuring uridine, are familiar components of the nucleoside family of bioactive natural products. The structural complexity and biological activities of these compounds have inspired research from organic chemistry and chemical biology communities seeking to develop novel approaches to assemble the challenging molecular targets, to gain inspiration for enzyme inhibitor development and to fuel antibiotic discovery efforts. This review will present recent case studies describing the total synthesis and biosynthesis of uridine natural products, and de novo synthetic efforts exploiting features of the natural products to produce simplified scaffolds. This research has culminated in the development of complementary strategies that can lead to effective uridine-based inhibitors and antibiotics. The strengths and challenges of the juxtaposing methods will be illustrated by examining select uridine natural products. Moreover, structure–activity relationships (SAR) for each natural product-inspired scaffold will be discussed, highlighting the impact on inhibitor development, with the aim of future uridine-based small molecule expansion.  相似文献   

6.
Complete accounts of the natural products chemistry of Bonnemaisonia nootkana, B. asparagoides, B. hamifera and Trailliella intricata are described. In contrast to the chemistry of the closely related alga Asparagopsis, Bonnemaisonia spp. do not produce halomethanes, but instead an array of C7-C9 halogen-containing ketones, alcohols and carboxylic acids. Biomimetic syntheses of these compounds suggest they are precursors and products of in vivo Favorsky rearrangements.  相似文献   

7.
The aerial parts of Perymenium klattianum afforded, in addition to kaurane and beyerane derivatives, three germacranolides, two of them isolated for the first time. The structures were elucidated by spectroscopic methods and by some chemical transformations, which in part gave unusual products. Perymeniopsis ovalifolia gave known compounds only.  相似文献   

8.
2,3-Butanediol (2,3-BD) is a promising bulk chemical with a potentially wide range of applications e.g., in the manufacture of printing inks, perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives, foodstuffs and pharmaceuticals. Its high heating value and ability to increase the octane number of fuels make 2,3-BD a promising drop-in fuel. It can also be converted to methyl-ethyl ketone (MEK), which is considered an effective liquid fuel additive. After combination with MEK and hydrogenation reaction, 2,3-BD can be converted to octane, which is used to produce high-quality aviation fuel. Currently 2,3-BD is mainly produced on an industrial scale by chemical methods. However, microbiological production of 2,3-BD offers a less expensive and more environmentally friendly alternative to traditional synthesis. This alcohol is generated from hexoses and pentoses mainly by bacterial strains of the genera Klebsiella, Bacillus, Serratia, and Enterobacter, which can convert waste products (such as glycerol and agricultural residues) and excess biomass (such as wood hydrolysates) to 2,3-BD. Recently, a significant improvement in microbial production has been achieved by the screening of efficient natural microbial strains, the application of alternative cost-effective substrates, and the genetic improvement of microbial producers. Furthermore, Klebsiella strains, which are regarded the most efficient natural 2,3-BD producers, have been subjected to genetic modifications aiming at the removal of pathogenic factors and the development of avirulent strains that could be used for the safe production of the diol. This review summarizes existing knowledge and experience concerning various strategies for efficient and economical microbial production of 2,3-BD.  相似文献   

9.
Based on its essential role in the life cycle of Trypanosoma cruzi, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been considered a promising target for the development of novel chemotherapeutic agents for the treatment of Chagas’ disease. In the course of our research program to discover novel inhibitors of this trypanosomatid enzyme, we have explored a combination of structure and ligand-based virtual screening techniques as a complementary approach to a biochemical screening of natural products using a standard biochemical assay. Seven natural products, including anacardic acids, flavonoid derivatives, and one glucosylxanthone were identified as novel inhibitors of T. cruzi GAPDH. Promiscuous inhibition induced by nonspecific aggregation has been discarded as specific inhibition was not reversed or affected in all cases in the presence of Triton X-100, demonstrating the ability of the assay to find authentic inhibitors of the enzyme. The structural diversity of this series of promising natural products is of special interest in drug design, and should therefore be useful in future medicinal chemistry efforts aimed at the development of new GAPDH inhibitors having increased potency.  相似文献   

10.
The exocrine compounds produced by several species of Hypoclinea were analysed and compared to those identified in species in other genera of the ant subfamily Dolichoderinae. Two new natural products, 2-hydroxy-6-methylaceto-phenone and 2-acetoxy-6-methylacetophenone, were identified as anal gland products of three Hypoclinea species. The significance of two “forms” of H. bidens possessing completely different glandular secretions is discussed, and the relationship of the genera Hypoclinea and Dolichoderus is explored in terms of the exocrine chemistry of species in these two dolichoderine taxa.  相似文献   

11.
12.
Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a high proportion of the individual molecular interaction motifs embedded within natural products using a fragment screening library spanning 422 structural clusters and comprised of approximately 2800 natural products.  相似文献   

13.
Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.  相似文献   

14.
The specificity of 1,3-1,4-β-glucanase from Synechocystis PCC6803 (SsGlc) was investigated using novel substrates 1,3-1,4-β-glucosyl oligosaccharides, in which 1,3- and 1,4-linkages are located in various arrangements. After the enzymatic reaction, the reaction products were separated and determined by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As a result, SsGlc was found to hydrolyze the pentasaccharides, which possess three contiguous 1,4-β-glycosidic linkages (cellotetraose sequence) adjacent to 1,3-β-linkage, but none of the other oligosaccharides were hydrolyzed. To further analyze the specificity, kinetic measurements were performed using polymeric substrates and 4-methylumbelliferyl derivatives of laminaribiose and cellobiose (1,3-β-(Glc)2-MU and 1,4-β-(Glc)2-MU). The kcat/Km value obtained for barley β-glucan was considerably larger than that for lichenan, indicating that SsGlc prefers 1,3-1,4-β-glucan possessing a larger amount of cellotetraose sequence. This is consistent with the data obtained for 1,3-1,4-β-glucosyl oligosaccharides. However, the kcat/Km value obtained for 1,4-β-(Glc)2-MU was considerably lower than that for 1,3-β-(Glc)2-MU, suggesting inconsistency with the data obtained from the other natural substrates. It is likely that the kinetic data obtained from such chromophoric substrates do not always reflect the true enzymatic properties.  相似文献   

15.
Multi-drug resistant Staphylococcus aureus infections have created a critical need for the development of new classes of antibacterials. Discovery of new naturally derived antibacterial agents with new mechanism of action remains a high priority globally. Several of the available antibacterial agents like β-lactams, polyketides, phenylpropanoids, aminoglycosides, macrolides, glycopeptides, streptogramins and lipopeptides are natural products or their semisynthetic variations. In the current scenario of alarming rise in antibacterial resistance, revisiting natural products with modern chemistry and biology tools has fascinated many medicinal chemists for discovery and development of natural products or derived semisynthetic derivatives as effective antibacterial agents. This review underlines the structures and anti-MRSA activity of various natural product derivatives covering recent reports, in vivo activities and brief Structure Activity Relationships (SARs).  相似文献   

16.
In the early eighteenth century, chemistry became the main academic locus where, in Francis Bacon’s words, Experimenta lucifera were performed alongside Experimenta fructifera and where natural philosophy was coupled with natural history and ‘experimental history’ in the Baconian and Boyleian sense of an inventory and exploration of the extant operations of the arts and crafts. The Dutch social and political system and the institutional setting of the university of Leiden endorsed this empiricist, utilitarian orientation toward the sciences, which was forcefully propagated by one of the university’s most famous representatives in the first half of the eighteenth century, the professor of medicine, botany and chemistry Herman Boerhaave. Recent historical investigations on Boerhaave’s chemistry have provided important insights into Boerhaave’s religious background, his theoretical and philosophical goals, and his pedagogical agenda. But comparatively little attention has been paid to the chemical experiments presented in Boerhaave’s famous chemical textbook, the Elementa chemiae, and to the question of how these experiments relate not only to experimental philosophy but also to experimental history and natural history, and to contemporary utilitarianism. I argue in this essay that Boerhaave shared a strong commitment to Baconian utilitarianism and empiricism with many other European chemists around the middle of the eighteenth century, in particular to what Bacon designated ‘experimental history’ and I will provide evidence for this claim through a careful analysis of Boerhaave’s plant-chemical experiments presented in the Elementa chemiae.  相似文献   

17.
Natural products have been a great source of pharmaceuticals since ages. Vast screening of natural products from different sources has led to the discovery of plethora of chemotherapeutic drugs and other compounds for the betterment of human life. Several bioactive entities have been generated by the structural modifications of the natural products or by using the natives as key models in synthetic chemistry. Nonetheless, a number of natural compounds with potential bioactivities remain unexploited in the medicinal field due to their stringent chemical properties. Andrographis paniculata Nees., a traditional medicinal herb from family Acanthaceae is known for its multiple pharmacological activities. It’s major bioactive constituent “andrographolide”, possesses promising anticancer potential and is one such unexploited treasure. The architecture of the molecule consists of an α-alkylidene γ-butyrolactone moiety, two olefin bond [Δ8(17) and Δ12(13)], three hydroxyls at C-3, C-19, and C-14 and highly substituted trans decalin. Of the three hydroxyl groups, one is allylic at C-14, and the others are secondary and primary at C-3 and C-19, respectively. By modification of the above structural features a number of andrographolide derivatives have been synthesized. The intricacy of the molecule has always been a constraint in developing a commercialized drug, nevertheless the efforts in this direction via synthetic chemistry are still continuous and prominent. The present review highlights the chemistry and anticancer activity of andrographolide. It discusses the limitations of the molecule as a pharmacological agent. Modifications in the key molecule along different moieties has been discussed which might lead to desirable bioactive molecules. The compiled information will be helpful in further developing specific modifications in andrographolide moiety which will have significant contribution in semi synthesis of anti-cancer agents.  相似文献   

18.
Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is ??invisible to natural selection?? because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore??s chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.  相似文献   

19.
In this study, chemical synthesis of the selective chromogenic/fluorogenic substrates for proteinase 3 is described. The substrates’ sequence was obtained using combinatorial chemistry methods. Deconvolution of the tripeptide library against proteinase 3 with general formula ABZ-X3-X2-X1-ANB-NH2 yielded the active sequence. Selected peptide was further modified on its C terminus to investigate the impact of chromophore moiety modification on enzyme-substrate interaction. To determine specificity, activity of selected substrates was characterized against proteinase 3 and neutrophil elastase. Finally, the peptide ABZ-Tyr-Tyr-Abu-ANB-NH2 displayed the highest value of specificity constant (kcat/KM = 189 × 103 M−1 s−1) for proteinase 3. To the best of our knowledge, this is the first short peptide that undergoes selective proteolysis by proteinase 3 and displays no significant hydrolysis in the presence of human neutrophil elastase and cathepsin G.  相似文献   

20.
A facile capillary electrophoresis (CE) method was developed for the screening of monoamine oxidase B (MAO-B) inhibitors in natural extracts. In this method, the enzymatic reaction occurred at the capillary inlet during a predetermined waiting period, followed by the electrophoretic separation of the reaction compounds, and detected by their UV absorbance at 280 nm. Conditions for the separation of substrates, products and enzyme were optimized. The optimal buffer composition was 50 mM N-2-hydroxyethyl-piperazine-N′-2-ethane sulphonic acid (HEPES) solution containing 10 mM SDS (pH = 7.4). Under the optimal condition, the baseline separation of substrates, products and enzyme was achieved within 2 min. The present method was used to determine MAO-B kinetic constants, Ki, Km and IC50 based on quantitative of the substrate peak area compared with the reference electropherogram obtained from without the inhibitor. A validation study shows good reproducibility for both migration time (RSD = 1.8%) and peak area (RSD = 3.9%). Finally, the screening of 16 natural extracts was performed, and 2 natural extracts from Fructus crataegi and Radix polygoni multiflori were identified to be positive for MAO-B inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号