首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Five healthy men exercised at 65-70% of maximum O2 uptake (VO2 max) for 30 min in an ambient temperature of 30 degrees C. Duplicate experiments were conducted at three levels of plasma volume:control, hypovolemia, in which blood volume (BV) was reduced an average of 490 ml (9.7%) with diuretics, and hypervolemia, in which BV was increased an average of 440 ml (7.8%) by infusing an isotonic solution containing 5% human serum albumin. Marked venoconstriction occurred during exercise in all conditions and persisted despite large increases in deep body temperature. The degree of venoconstriction was similar during control and hypervolemic conditions, but was potentiated during hypovolemia. The observed venoconstriction appeared to consist of two components: an early one related to autonomic adjustments at the onset of exercise, and a later one possibly related to progressive decreases in cardiac filling. Heart rate, cardiac stroke volume (SV), and cardiac output during exercise were significantly affected by changes in BV. During hypovolemia the average differences from control values were 10 beats X min-1, -14 ml, and -2.2 l X min-1, respectively; during hypervolemia the differences from control were -7 X min-1, 10 ml, and 1.0 l X min-1, respectively. The pattern of SV over the course of exercise indicates that pooling of blood in veins may be quantitatively more important than plasma water loss in reducing cardiac filling pressure in the heat.  相似文献   

7.
This study examined the effect of acute exposure of the whole body to cold on blood lactate response during incremental exercise. Eight subjects were tested with a cycle ergometer in a climatic chamber, room temperature being controlled either at 24 degrees C (MT) or at -2 degrees C (CT). The protocol consisted of a step increment in exercise intensity of 30 W every 2 min until exhaustion. Oxygen consumption (VO2) was measured at rest and during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for estimations of plasma norepinephrine (NE), epinephrine (E), free fatty acid (FFA) and glucose concentrations, during the last 15 s of each exercise step and also during the 1st, 4th, 7th, and the 10th min following exercise for the determination of blood lactate (LA) concentration. The VO2 was higher during CT than during MT at rest and during nearly every exercise intensity. At CT, lactate anaerobic threshold (LAT), determined from a marked increase of LA above resting level, increased significantly by 49% expressed as absolute VO2, and 27% expressed as exercise intensity as compared with MT. The LA tended to be higher for light exercise intensities and lower for heavy exercise intensities during CT than during MT. The E and NE concentrations increased during exercise, regardless of ambient temperature. Furthermore, at rest and at exhaustion E concentrations did not differ between both conditions, while NE concentrations were greater during CT than during MT. Moreover, an increase off FFA was found only during CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
To calculate cardiac output by the indirect Fick principle, CO(2) concentrations (CCO(2)) of mixed venous (Cv(CO(2))) and arterial blood are commonly estimated from PCO(2), based on the assumption that the CO(2) pressure-concentration relationship (PCO(2)-CCO(2)) is influenced more by changes in Hb concentration and blood oxyhemoglobin saturation than by changes in pH. The purpose of the study was to measure and assess the relative importance of these variables, both in arterial and mixed venous blood, during rest and increasing levels of exercise to maximum (Max) in five healthy men. Although the mean mixed venous PCO(2) rose from 47 Torr at rest to 59 Torr at the lactic acidosis threshold (LAT) and further to 78 Torr at Max, the Cv(CO(2)) rose from 22.8 mM at rest to 25.5 mM at LAT but then fell to 23.9 mM at Max. Meanwhile, the mixed venous pH fell from 7.36 at rest to 7.30 at LAT and to 7.13 at Max. Thus, as work rate increases above the LAT, changes in pH, reflecting changes in buffer base, account for the major changes in the PCO(2)-CCO(2) relationship, causing Cv(CO(2)) to decrease, despite increasing mixed venous PCO(2). Furthermore, whereas the increase in the arteriovenous CCO(2) difference of 2.2 mM below LAT is mainly due to the increase in Cv(CO(2)), the further increase in the arteriovenous CCO(2) difference of 4.6 mM above LAT is due to a striking fall in arterial CCO(2) from 21.4 to 15.2 mM. We conclude that changes in buffer base and pH dominate the PCO(2)-CCO(2) relationship during exercise, with changes in Hb and blood oxyhemoglobin saturation exerting much less influence.  相似文献   

9.
This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30 degrees C or at 10 degrees C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la-]b. The VO2 was identical under both environments. At 10 degrees C, as compared to 30 degrees C, the lactate anaerobic threshold (Than,la-) occurred at an exercise intensity 15 W higher and [la-]b was lower for submaximal intensities above the Than,la-. Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10 degrees C [15.60 (SEM 3.15) nmol.l-1] than at 30 degrees C [8.64 (SEM 2.37) nmol.l-1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la-]b observed for submaximal high intensities during severe cold exposure.  相似文献   

10.
These experiments examined the effect of hypoxia and hyperoxia on ventilation, lactate concentration and electromyographic activity during an incremental exercise test in order to determine if coincident chances in ventilation and electromyographic activity occur during an incremental exercise test, despite an enhancement or reduction of peripheral chemoreceptor activity. In addition, these experiments were completed to determine if electromyographic activity and ventilation are enhanced or reduced in response to the inspiration of oxygen-depleted and oxygen-enriched air, respectively. Seven subjects performed three incremental exercise tests, until volitional exhaustion was achieved, while inspiring air with a fractional concentration of oxygen of either 66%, 21% or 17%. In addition, another single subject completed two tests while inspiring air with a fractional concentration of either 17% or 21%. During the tests, ventilation, mixed expired oxygen and carbon dioxide, arterialized venous blood and the electromyographic activity from the vastus lateralis were sampled. From these values ventilation, electromyographic and lactate thresholds were detected during normoxia, hypoxia and hyperoxia. The results showed that although ventilation and lactate concentration were significantly less during hyperoxia as compared to normoxia or hypoxia, the carbon dioxide production values were not significantly different between the normoxic, hypoxic and hyperoxic conditions. For a particular condition, the time, carbon dioxide production and oxygen consumption values that corresponded to the ventilation and electromyographic thresholds were not significantly different, but the values corresponding to the lactate threshold were significantly less than those for the electromyographic and ventilation thresholds. Comparisons between the three conditions showed that the time, carbon dioxide production and oxyen consumption values corresponding to each of these thresholds were not significantly different. These findings have led us to conclude that the changes in lactate concentration observed during exercise may not be directly related to the fractional concentration of inspired oxygen, and that the peripheral chemoreceptors may not be the sole mediators of the first ventilatory threshold. It is suggested that this threshold may be mediated by an increase in neural activity originating from higher motor centers or the exercising limbs, induced in response to the need to progressively recruit fast twitch muscle fibers as exercise power output is increased and as individual muscle fibers begin to fatigue.  相似文献   

11.
To determine the effect of the duration of incremental exercise on the point at which arterial blood lactate concentration (HLa) increases above the resting value (anaerobic threshold: AT) and on the point at which HLa reaches a constant value of 4 mM (onset of blood lactate accumulation: OBLA), eight male students performed two different kinds of incremental exercise. A comparison of arterial HLa and venous HLa was made under both conditions of incremental exercise. The incremental bicycle exercise tests consisted of 25 W increase every minute (1-min test) and every 4 min (4-min test). At maximal exercise, there were no significant differences in either gas exchange parameters or HLa values for the two kinds of incremental exercise. However, the peak workloads attained during the two exercises were significantly different (P less than 0.01). At OBLA and AT, there were no significant differences in gas exchange parameters during the 1-min and 4-min tests except for the workload (at OBLA P less than 0.01; at AT P less than 0.05). When venous blood HLa was used instead of arterial HLa for a 4-min test, AT was not significantly different from that obtained by arterial HLa, but OBLA was significantly different from that obtained by arterial HLa (P less than 0.05). On the other hand, for the 1-min test, venous HLa values yielded significantly higher AT and OBLA compared with those obtained using arterial HLa (P less than 0.01). It was concluded that when arterial blood was used, there was no effect of duration of workload increase in an incremental exercise test on the determination of the AT and OBLA expressed in VO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.

Background

Central venous oxygen saturation (ScvO2), venous-arterial blood carbon dioxide partial pressures difference (Pv-aCO2), venous-arterial blood carbon dioxide partial pressures difference/arterial-venous oxygen difference ratio (Pv-aCO2/Ca-vO2) and lactate are important parameters employed during shock resuscitation. We designed this study to confirm the effects of time delay and body temperature on measurements of these four parameters.

Methods

Arterial and central venous blood samples were simultaneously drawn by plastic syringes via indwelling intra-arterial and central venous catheters from critically ill patients. Blood gas analyses were performed on both samples and repeated after 10, 20, 30, 40, 50 and 60?min. Patients were divided into a control group and a high temperature group according to whether the body temperature was greater than 38?°C.

Results

A total of 30 critically ill patients were enrolled. There was a trend of increasing values for ScvO2, Pv-aCO2, Pv-aCO2/Ca-vO2 and lactate over time (P?<?0.001). The ScvO2 differences were all lower in high temperature group after 10, 20, 30, 40, 50 and 60?min when compared to the corresponding differences in the control group (P?<?0.05). The differences in lactate values were slightly higher in the high temperature group, relative to the control group after 20, 30, 40, 50 and 60?min (P?<?0.05).

Conclusions

Measurements of ScvO2, Pv-aCO2, lactate and Pv-aCO2/Ca-vO2 were affected by time delay or body temperature. We recommend that arterial and central venous blood gas samples be analyzed quickly within 10?min, especially for patients with body temperature <38?°C.

Trial registration

ChiCTR, ChiCTR1800014484. Registered 16 January 2018.
  相似文献   

13.
Close agreement between arterialized venous and arterial pH, PCO2, and lactate has previously been demonstrated during steady-state exercise. The purpose of the present study was to compare arterialized venous and arterial pH, PCO2, K+, lactate, pyruvate, and epinephrine during the constantly changing circumstances of an incremental exercise test. Eight normal subjects undertook an incremental exercise test (increasing by 20 W/min) to exhaustion on a cycle ergometer during which simultaneous arterial and arterialized venous samples were drawn over the last 20 s of each work load. Linear regression of arterialized venous on arterial values showed that r varied from 0.97 to 0.99 for the variables examined and, therefore, showed that accurate estimates of arterial values could be made from the arterialized venous results during incremental testing. For many purposes it could be assumed that arterialized venous values equaled arterial values without serious error.  相似文献   

14.
A biofeedback model of hyperventilation during exercise was used to assess the independent effects of pH, arterial CO2 partial pressure (PaCO2), and minute ventilation on blood lactate during exercise. Eight normal subjects were studied with progressive upright bicycle exercise (2-min intervals, 25-W increments) under three experimental conditions in random order. Arterialized venous blood was drawn at each work load for measurement of blood lactate, pH, and PaCO2. Results were compared with those from reproducible control tests. Experimental conditions were 1) biofeedback hyperventilation (to increase pH by 0.08-0.10 at each work load); 2) hyperventilation following acetazolamide (which returned pH to control values despite ventilation and PaCO2 identical to condition 1); and 3) metabolic acidosis induced by acetazolamide (with spontaneous ventilation). The results showed an increase in blood lactate during hyperventilation. Blood lactate was similar to control with hyperventilation after acetazolamide, suggesting that the change was due to pH and not to PaCO2 or total ventilation. Exercise during metabolic acidosis (acetazolamide alone) was associated with blood lactate lower than control values. Respiratory alkalosis during exercise increases blood lactate. This is due to the increase in pH and not to the increase in ventilation or the decrease in PaCO2.  相似文献   

15.
Seven healthy endurance-trained [maximal O2 uptake (VO2max) = 57.1 +/- 4.1 ml.kg-1.min-1)] female volunteers (mean age 24.4 +/- 3.6 yr) served as subjects in an experiment measuring arterial blood gases, acid-base status, and lactate changes while breath holding (BH) during intense intermittent exercise. By the use of a counterbalance design, each subject repeated five intervals of a 15-s on:30-s off treadmill run at 125% VO2max while BH and while breathing freely (NBH). Arterial blood for pH, PO2, PCO2, O2 saturation (SO2) HCO3, and lactate was sampled from a radial arterial catheter at the end of each work and rest interval and throughout recovery, and the results were analyzed using repeated-measures analysis of variance. Significant reductions in pHa (delta mean = 0.07, P less than 0.01), arterial PO2 (delta mean = 24.2 Torr, P less than 0.01), and O2 saturation (delta mean = 4.6%, P less than 0.01) and elevations in arterial PCO2 (delta mean = 8.2 Torr, P less than 0.01) and arterial HCO3 (delta mean = 1.3 meq/l, P = 0.05) were found at the end of each exercise interval in the BH condition. All of the observed changes in arterial blood gases and acid-base status induced by BH were reversed during the rest intervals. During recovery, significantly (P less than 0.025) greater levels of arterial lactate were found in the BH condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
O2 concentration, PO2, PCO2, pH, osmolarity, lactate (LA), and hemoglobin (Hb) concentrations in deep forearm venous blood were repeatedly measured during submaximal exercise of forearm muscles. Concentrations of arterial blood gases were determined at rest and during exercise. Experiments were conducted under normoxia and hypobaric hypoxia (PB = 465 Torr). In arterial blood, data obtained during exercise were the same as those obtained during rest under either normoxia or hypoxia. In venous muscular blood, PO2 and O2 concentration were lower at rest and during exercise in hypoxia. The muscular arteriovenous O2 difference during exercise in hypoxia was increased by no more than 10% compared with normoxia, which implied that muscular blood flow during exercise also increased by the same percentage, if we assume that exercise O2 consumption was not affected by hypoxia. Despite increased [LA], the magnitude of changes in PCO2 and pH in hypoxia were smaller than in normoxia during exercise and recovery; this finding is probably due to the increased blood buffer value induced by the greater amount of reduced Hb in hypoxia. Hence all the changes occurring in hypoxia showed that local metabolism was less affected than we expected from the decrease in arterial PO2. The rise in [Hb] that occurred during exercise was lower in hypoxia. Possible underlying mechanisms of the [Hb] rise during exercise are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号