首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed an evolutionary relevant model system, barley-Puccinia [corrected] rust fungi, to study the inheritance and specificity of plant factors that determine to what extent innate nonhost immunity can be suppressed. A mapping population was developed from a cross between an experimental barley line (SusPtrit) [corrected] with exceptional susceptibility to several heterologous [corrected] (nonhost) rust fungi and regular, immune, cv. Vada [corrected] Seedlings were inoculated with five heterologous [corrected] and two homologous (host) species of rust fungi. Resistance segregated quantitatively for each of the rust fungi. In total, 18 chromosomal regions were implicated. For each rust species, a different set of genes was effective. Of the 18 chromosomal regions, 11 were significantly effective to only one rust species and 7 were effective to more than one rust species, implying genetic linkage or pleiotropy. One resistance (R) gene for hypersensitive resistance to Puccinia hordei-secalini was mapped, suggesting occasional contribution of R genes to nonhost resistance in barley. Quantitative trait loci (QTLs) with effects to multiple rust fungi did not tend to be particularly effective to rust species that were phylogenetically related, as determined from their internal transcribed spacer sequence. We suggest that the QTLs described here play a role as specific and quantitative recognition factors that are specifically negated by the rust to successfully suppress innate immunity.  相似文献   

2.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

3.
Jafary H  Albertazzi G  Marcel TC  Niks RE 《Genetics》2008,178(4):2327-2339
Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley-Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit, with exceptional susceptibility to heterologous rust species, with the immune barley cultivars Vada and Cebada Capa. These two mapping populations along with the Oregon Wolfe Barley population, which showed unexpected segregation for resistance to heterologous rusts, were phenotyped with four heterologous rust fungal species. Positions of QTL conferring nonhost resistance in the three mapping populations were compared using an integrated consensus map. The results confirmed that nonhost resistance in barley to heterologous rust species is controlled by QTL with different and overlapping specificities and by an occasional contribution of an R-gene for hypersensitivity. In each population, different sets of loci were implicated in resistance. Few genes were common between the populations, suggesting a high diversity of genes conferring nonhost resistance to heterologous pathogens. These loci were significantly associated with QTL for partial resistance to the pathogen Puccinia hordei and with defense-related genes.  相似文献   

4.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

5.
6.
A resistance gene (Rph22) to barley leaf rust caused by Puccinia hordei was introgressed from the non-host species Hordeum bulbosum into cultivated barley. The H. bulbosum introgression in line ‘182Q20’ was located to chromosome 2HL using genomic in situ hybridisation (GISH). Using molecular markers it was shown to cover approximately 20 % of the genetic length of the chromosome. The introgression confers a very high level of resistance to P. hordei at the seedling stage that is not based on a hypersensitive reaction. The presence of the resistance gene increased the latency period of the leaf rust fungus and strongly reduced the infection frequency relative to the genetic background cultivar ‘Golden Promise’. An F2 population of 550 individuals was developed and used to create a genetic map of the introgressed region and to determine the map position of the underlying resistance gene(s). The resistance locus, designated Rph22, was located to the distal portion of the introgression, co-segregating with markers H35_26334 and H35_45139. Flanking markers will be used to reduce the linkage drag, including gene(s) responsible for a yield penalty, around the resistance locus and to transfer the gene into elite barley germplasm. This genetic location is also known to harbour a QTL (Rphq2) for non-hypersensitive leaf rust resistance in the barley cultivar ‘Vada’. Comparison of the ‘Vada’ and H. bulbosum resistances at this locus may lead to a better understanding of the possible association between host and non-host resistance mechanisms.  相似文献   

7.
8.

Key message

We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool.

Abstract

Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar ‘Barke,’ resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between ‘Barke’ and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.  相似文献   

9.
10.
Most cultivars of higher plants display poor regeneration capacity of explants due to yet unknown genotypic determined mechanisms. This implies that technologies such as transformation often are restricted to model cultivars with good tissue characteristics. In the present paper, we add further evidence to our previous hypothesis that regeneration from young barley embryos derived from in vitro-cultured ovules is genotype independent. We investigated the ovule culture ability of four cultivars Femina, Salome, Corniche and Alexis, known to have poor response in other types of tissue culture, and compared that to the data for the model cultivar, Golden Promise. Subsequently, we analyzed the transformation efficiencies of the four cultivars using the protocol for Agrobacterium infection of ovules, previously developed for Golden Promise. Agrobacterium tumefaciens strain AGL0, carrying the binary vector pVec8-GFP harboring a hygromycin resistance gene and the green fluorescence protein (GFP) gene, was used for transformation. The results strongly indicate that the tissue culture response level in ovule culture is genotype independent. However, we did observe differences between cultivars with respect to frequencies of GFP-expressing embryos and frequencies of regeneration from the GFP-expressing embryos under hygromycin selection. The final frequencies of transformed plants per ovule were lower for the four cultivars than that for Golden Promise but the differences were not statistically significant. We conclude that ovule culture transformation can be used successfully to transform cultivars other than Golden Promise. Similar to that observed for Golden Promise, the ovule culture technique allows for the rapid and direct generation of high quality transgenic plants.  相似文献   

11.
The dominant barley stem rust resistance gene Rpg1 confers resistance to many but not all pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici (Pgt). Transformation of Rpg1 into susceptible cultivar Golden Promise rendered the transgenic plants resistant to Pgt pathotype MCC but not to Pgt pathotype QCC. Our objective was to identify genes that are induced/repressed during the early stages of pathogen infection to elucidate the molecular mechanisms and role of Rpg1 in defense. A messenger ribonucleic acid expression analysis using the 22K Barley1 GeneChip was conducted in all pair-wise combinations of two isolines (cv. Golden Promise and Rpg1 transgenic line G02-448F-3R) and two Pgt pathotypes (MCC and QCC) across six time points. Analysis showed that a total of 34 probe sets exhibited expression pattern differences between Golden Promise (susceptible) and G02-448F-3R (resistant) infected with Pgt-MCC. A total of 14 probe sets exhibited expression pattern differences between Pgt-MCC (avirulent) and Pgt-QCC (virulent) inoculated onto G02-448F-3R. These differentially expressed genes were activated during the early infection process, before the hypersensitive response or fungal growth inhibition occurred. Our analysis provides a list of candidate signaling components, which can be analyzed for function in Rpg1-mediated disease resistance.  相似文献   

12.

Key message

To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.”

Abstract

Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.  相似文献   

13.
Quantitative powdery mildew resistance in compatible host-pathogen-combinations was measured by the number of pastules/cm2 leaf area. Spring barley cultivar ‘Proctor’ was significantly less infected than ‘Golden Promise”. Using these two cultivars (having no effective major resistance gene) as controls, MO- and AR-resistant cultivars were inoculated with virulent mildew isolates. ‘Mona”, ‘Grit’ and ‘Nudinka’ had a higher or, at least, the same level of quantitative resistance as ‘Proctor”. None of the remaining cultivars showed the high susceptibility expressed by ‘Golden Promise”. Ranking of host genotypes was nearly constant while that of mildew isolates varied considerably. Only a small portion of the observed variance was due to interaction between host cultivars and pathogen isolates. ‘Triesdorfer Diva’ gave a resistant infection type after inoculation with different AR-virulent isolates, indicating that this cultivar has major resistance other than that conditioned by gene Ml-a12.  相似文献   

14.

Key message

Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach.

Abstract

African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.  相似文献   

15.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

16.

Key message

Wheat– Aegilops speltoides recombinants carrying stem rust resistance genes Sr32 and SrAes1t effective against Ug99 and PCR markers for marker-assisted selection.

Abstract

Wild relatives of wheat are important resources for new rust resistance genes but underutilized because the valuable resistances are often linked to negative traits that prevent deployment of these genes in commercial wheats. Here, we report ph1b-induced recombinants with reduced alien chromatin derived from E.R. Sears’ wheat–Aegilops speltoides 2D-2S#1 translocation line C82.2, which carries the widely effective stem rust resistance gene Sr32. Infection type assessments of the recombinants showed that the original translocation in fact carries two stem rust resistance genes, Sr32 on the short arm and a previously undescribed gene SrAes1t on the long arm of chromosome 2S#1. Recombinants with substantially shortened alien chromatin were produced for both genes, which confer resistance to stem rust races in the TTKSK (Ug99) lineage and representative races of all Australian stem rust lineages. Selected recombinants were back crossed into adapted Australian cultivars and PCR markers were developed to facilitate the incorporation of these genes into future wheat varieties. Our recombinants and those from several other labs now show that Sr32, Sr39, and SrAes7t on the short arm and Sr47 and SrAes1t on the long arm of 2S#1 form two linkage groups and at present no rust races are described that can distinguish these resistance specificities.  相似文献   

17.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

18.

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
  相似文献   

19.

Key message

Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield.

Abstract

Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar ‘GPBD 4’ into three rust susceptible varieties (‘ICGV 91114’, ‘JL 24’ and ‘TAG 24’) through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2–3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56–96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.  相似文献   

20.
Two spring barley cultivars, Golden Promise and Galan, were screened for callus induction and shoot regeneration from cultured immature inflorescences. Genotype Galan have better regeneration capacity in in vitro conditions than Golden Promise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号