首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

A point mutation in the AHAS1 gene leading to resistance to imidazolinone in chickpea was identified. The resistance is inherited as a single gene. A KASP marker targeting the mutation was developed.

Abstract

Weed control in chickpea (Cicer arietinum L.) is challenging due to poor crop competition ability and limited herbicide options. A chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified, but the genetic inheritance and the mechanism were unknown. In many plant species, resistance to IMI is caused by point mutation(s) in the acetohydroxyacid synthase (AHAS) gene resulting in an amino acid substitution preventing herbicide attachment to the molecule. The main objective of this research was to characterize the resistance to IMI herbicides in chickpea. Two homologous AHAS genes namely AHAS1 and AHAS2 sharing 80 % amino acid sequence similarity were identified in the chickpea genome. Cluster analysis indicated independent grouping of AHAS1 and AHAS2 across legume species. A point mutation in the AHAS1 gene at C675 to T675 resulting in an amino acid substitution from Ala205 to Val205 confers the resistance to IMI in chickpea. A KASP marker targeting the point mutation was developed and effectively predicted the response to IMI herbicides in a recombinant inbred (RI) population of chickpea. The RI population was used in molecular mapping where the major locus for the reaction to IMI herbicide was mapped to chromosome 5. Segregation analysis across an F2 population and RI population demonstrated that the resistance is inherited as a single gene in a semi-dominant fashion. The simple genetic inheritance and the availability of KASP marker generated in this study would speed up development of chickpea varieties with resistance to IMI herbicides.  相似文献   

2.
3.

Key message

Biochemical characterization in combination with genetic analyses in BC 2 S 1 plants and near-isogenic lines led to the detection and validation of C. baccatum loci affecting flavor, terpenoid content and Brix level.

Abstract

The species Capsicum baccatum includes the most common hot peppers of the Andean cuisine, known for their rich variation in flavors and aromas. So far the C. baccatum genetic variation remained merely concealed for Capsicum annuum breeding, due to post-fertilization genetic barriers encountered in interspecific hybridization. However, to exploit the potential flavor wealth of C. baccatum we combined interspecific crossing with embryo rescue, resulting in a multi-parent BC2S1 population. Volatile and non-volatile compounds plus some physical characters were measured in mature fruits, in combination with taste evaluation by a sensory panel. An enormous variation in biochemical composition and sensory attributes was found, with almost all traits showing transgression. A population-specific genetic linkage map was developed for QTL mapping. BC2S1 QTLs were validated in an experiment with near-isogenic lines, resulting in confirmed genetic effects for physical, biochemical and sensory traits. Three findings are described in more detail: (1) A small C. baccatum LG3 introgression caused an extraordinary effect on flavor, resulting in significantly higher scores for the attributes aroma, flowers, spices, celery and chives. In an attempt to identify the responsible biochemical compounds few consistently up- and down-regulated metabolites were detected. (2) Two introgressions (LG10.1 and LG1) had major effects on terpenoid content of mature fruits, affecting at least 15 different monoterpenes. (3) A second LG3 fragment resulted in a strong increase in Brix without negative effects on fruit size. The mapping strategy, the potential application of studied traits and perspectives for breeding are discussed.  相似文献   

4.

Aims

The main goal of the study reported herein was to assess the nodulation performance of a Mesorhizobium strain transformed with an exogenous ACC deaminase gene (acdS), and its subsequent ability to increase chickpea plant growth under normal and waterlogged conditions.

Methods

The Mesorhizobium ciceri strain LMS-1 was transformed with the acdS gene of Pseudomonas putida UW4 by triparental conjugation using plasmid pRKACC. A plant growth assay was conducted to verify the plant growth promotion ability of the LMS-1 (pRKACC) transformed strain under normal and waterlogging conditions. Bacterial ACC deaminase and nitrogenase activity was measured.

Results

By expressing the exogenous acdS gene, the transformed strain LMS-1 showed a 127% increased ability to nodulate chickpea and a 125% promotion of the growth of chickpea compared to the wild-type strain, under normal conditions. Plants inoculated with the LMS-1 wild-type strain showed a higher nodule number under waterlogging stress than under control conditions, suggesting that waterlogging increases nodulation in chickpea. No significant relationship was found between ACC deaminase and nitrogenase activity.

Conclusions

The results obtained in this study show that the use of rhizobial strains with improved ACC deaminase activity might be very important for developing microbial inocula for agricultural purposes.  相似文献   

5.

Key message

This study provides a foundation for further research on root genetic regulation and molecular breeding with emphasis on correlations among root traits to ensure robust root growth and well-developed root systems.

Abstract

A set of 447 recombinant inbred lines (RILs) derived from a cross between Jingdou23 (cultivar, female parent) and ZDD2315 (semi-wild, male parent) were used to analyze inheritance and detect QTLs related to root traits at the seedling stage using major gene plus polygene mixed inheritance analysis and composite interval mapping. The results showed that maximum root length (MRL) was controlled by three equivalent major genes, lateral root number (LRN) was controlled by two overlapping major genes, root weight (RW) and volume (RV) were controlled by four equivalent major genes. Hypocotyl length (HL) was controlled by four additive main genes, and hypocotyl weight (HW) was controlled by four additive and additive × additive epistatic, major genes; however, polygene effects were not detected in these traits. Shoot weight (SW) was controlled by multi-gene effects, but major gene effects were not detected. Twenty-four QTLs for MRL, LRN, RW, RV, SW, HL, HW were mapped on LG A1 (chromosome 5), LG A2 (chromosome 8), LG B1 (chromosome 11), LG B2 (chromosome 14), LG C2 (chromosome 6), LG D1b (chromosome 2), LG F_1 (chromosome 13), LG G (chromosome 18), LG H_1 (chromosome 12), LG H_2 (chromosome 12), LG I (chromosome 20), LG K_2 (chromosome 9), LG L (chromosome 19), LG M (chromosome 7), LG N (chromosome 3), LG O (chromosome 10), separately. Root traits were shown to have complex genetic mechanisms at the seedling stage, SW was controlled by multi-gene effects, and the other six traits were controlled by major gene effects. It is concluded that correlations among root traits must be considered to improve the development of beneficial root traits.  相似文献   

6.

Key message

Six quantitative trait loci (QTL) for Gibberella ear rot resistance in maize were tested in two different genetic backgrounds; three QTL displayed an effect in few near isogenic line pairs.

Abstract

Few quantitative trait loci (QTL) mapping studies for Gibberella ear rot (GER) have been conducted, but no QTL have been verified so far. QTL validation is prudent before their implementation into marker-assisted selection (MAS) programs. Our objectives were to (1) validate six QTL for GER resistance, (2) evaluate the QTL across two genetic backgrounds, (3) investigate the genetic background outside the targeted introgressions. Pairs of near isogenic lines (NILs) segregating for a single QTL (Qger1, Qger2, Qger10, Qger13, Qger16, or Qger21) were developed by recurrent backcross until generation BC3S2. Donor parents (DP) carrying QTL were backcrossed to a susceptible (UH009) and a moderately resistant (UH007) recurrent parent. MAS was performed using five SNP markers covering a region of 40 cM around each QTL. All NILs were genotyped with the MaizeSNP50 assay and phenotyped for GER severity and deoxynivalenol and zearalenone content. Traits were significantly (P < 0.001) intercorrelated. Out of 34 NIL pairs with the UH009 genetic background, three pairs showed significant differences in at least one trait for three QTL (Qger1, Qger2, Qger13). Out of 25 NIL pairs with the UH007 genetic background, five pairs showed significant differences in at least one trait for two QTL (Qger2, Qger21). However, Qger16, Qger10 and Qger13 were most likely false positives. The genetic background possibly affected NIL pairs comparisons due to linkage drag and/or epistasis with residual loci from the DP in non-target regions. In conclusion, validation rates were disappointingly low, which further indicates that GER resistance is controlled by many low-effect QTL.
  相似文献   

7.
8.

Background and aims

Rhizobia associated with chickpea in the main chickpea production zone of Xinjiang, China have never been investigated. Here, we present the first systematic investigation of these rhizobia’s genetic diversity and symbiotic interactions with their host plant.

Methods

Ninety-five isolates obtained from chickpea nodules in eight alkaline-saline (pH?8.24–8.45) sites in Xinjiang were characterized by nodulation test, symbiotic gene analysis, PCR-based restriction fragment length polymorphism (RFLP) of the 16S rRNA gene and 16S–23S rRNA intergenic spacer (IGS), BOX-PCR, phylogenies of 16S rRNA and housekeeping genes (atpD, recA and glnII), multilocus sequence analysis (MLSA) and DNA–DNA hybridization.

Results

All 95 isolates were identified within the genus of Mesorhizobium. Similarities less than 96.5% in MLSA and DNA–DNA hybridization values (<50%) between the new isolates and the defined Mesorhizobium species, and high similarities (>98%) of symbiotic genes (nodC and nifH) with those of the well studied chickpea microsymbioints Mesorhizobium ciceri and Mesorhizobium mediterraneum were found.

Conclusions

Chickpea rhizobia in alkaline-saline soils of Xinjiang, China, form a population distinct from the defined Mesorhizobium species. All these chickpea rhizobia in Xinjiang harbored symbiotic genes highly similar to the type strains of two well-studied chickpea rhizobia, M. ciceri and M. mediterraneum, evidencing the possible lateral transfer of symbiotic genes among these different rhizobial species. On the other hand, chickpea may strongly select rhizobia with a unique symbiotic gene background.  相似文献   

9.
10.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

11.
12.

Key message

This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine.

Abstract

Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N’-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l?1 kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.  相似文献   

13.

Key message

Stripe rust resistance transferred from Thinopyrum intermedium into common wheat was controlled by a single dominant gene, which mapped to chromosome 1B near Yr26 and was designated YrL693.

Abstract

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a highly destructive disease of wheat (Triticum aestivum). Stripe rust resistance was transferred from Thinopyrum intermedium to common wheat, and the resulting introgression line (L693) exhibited all-stage resistance to the widely virulent and predominant Chinese pathotypes CYR32 and CYR33 and to the new virulent pathotype V26. There was no cytological evidence that L693 had alien chromosomal segments from Th. intermedium. Genetic analysis of stripe rust resistance was performed by crossing L693 with the susceptible line L661. F1, F2, and F2:3 populations from reciprocal crosses showed that resistance was controlled by a single dominant gene. A total 479 F2:3 lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to six publicly available and three recently developed wheat genomic SSR markers. The linked markers were localized to wheat chromosome 1B using Chinese Spring nulli-tetrasomic lines, and the resistance gene was localized to chromosome 1B based on SSR and wheat genomic information. A high-density genetic map was also produced. The pedigree, molecular marker data, and resistance response indicated that the stripe rust resistance gene in L693 is a novel gene, which was temporarily designated YrL693. The SSR markers that co-segregate with this gene (Xbarc187-1B, Xbarc187-1B-1, Xgwm18-1B, and Xgwm11-1B) have potential application in marker-assisted breeding of wheat, and YrL693 will be useful for broadening the genetic basis of stripe rust resistance in wheat.  相似文献   

14.

Key message

Marker-free transgenic eggplants, exhibiting enhanced resistance to Alternaria solani , can be generated on plant growth regulators (PGRs)- and antibiotic-free MS medium employing the multi-auto-transformation (MAT) vector, pMAT21 - wasabi defensin , wherein isopentenyl transferase ( ipt ) gene is used as a positive selection marker.

Abstract

Use of the selection marker genes conferring antibiotic or herbicide resistance in transgenic plants has been considered a serious problem for environment and the public. Multi-auto-transformation (MAT) vector system has been one of the tools to excise the selection marker gene and produce marker-free transgenic plants. Ipt gene was used as a selection marker gene. Wasabi defensin gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), was used as a gene of interest. Wasabi defensin gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledon explants of eggplant were cultured on PGRs- and antibiotic-free MS medium. Extreme shooty phenotype/ipt shoots were produced by the explants infected with the pMAT21-wasabi defensin (WD). The same PGRs- and antibiotic-free MS medium was used in subcultures of the ipt shoots. Subsequently, morphologically normal shoots emerged from the Ipt shoots. Molecular analyses of genomic DNA from transgenic plants confirmed the integration of the WD gene and excision of the selection marker (ipt gene). Expression of the WD gene was confirmed by RT-PCR and Northern blot analyses. In vitro whole plant and detached leaf assay of the marker-free transgenic plants exhibited enhanced resistance against Alternaria solani.  相似文献   

15.

Key message

Japonica and indica have different non-host resistance (NHR) abilities to Puccinia striiformis f. sp. tritici ( Pst ), and hydrogen peroxide (H 2 O 2 ) has a positive function in NHR to japonica against Pst.

Abstract

Non-host interactions between Puccinia striiformis f. sp. tritici (Pst) and two rice subspecies were characterized using 23 rice varieties, including 11 japonica and 12 indica. Results showed that the infected fungal structures were easily produced in the leaves of indica, whereas only several substomatal vesicles and primary infection hyphae were observed in the leaves of japonica. This result indicated that indica is less resistant or more susceptible to Pst than japonica. Hydrogen peroxide accumulated in the initial phase of japonicaPst interaction but not in indicaPst interaction. A set of reactive oxygen species (ROS)-related genes was also induced in response to Pst infection, suggesting that ROS activation is one of the major mechanisms of non-host resistance of rice to Pst.  相似文献   

16.
Lobophorins A (1) and B (2) belong to a large group of spirotetronate natural products with potent antibacterial and antitumor activities. The cloning of the lobophorin biosynthesis gene cluster from the deep-sea-derived Streptomyces sp. SCSIO 01127 identified a sugar-O-methyltransferase-encoding gene lobS1. The lobS1 inactivation mutant accumulated two new lobophorin analogs 3 and 4, different from 1 and 2 by lacking the 4-methyl group at the terminal l-digitoxose, respectively. Biochemical experiments verified that LobS1 was a SAM-dependent sugar-O-methyltransferase that required divalent metal ions for better activity. Antibacterial assays revealed compounds 3 and 4 were generally less potent than compounds 1 and 2. These findings suggest that the methylation on the terminal digitoxose by LobS1 tailors lobophorin biosynthesis and highlights the importance of this methylation for antibacterial potence.  相似文献   

17.

Key message

The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene.

Abstract

Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase that catalyzes the 5-hydroxylation step required for the production of syringyl units in lignin biosynthesis. The Eucalyptus globulus enzyme was characterized in vitro, and results showed that the preferred substrates were coniferaldehyde and coniferyl alcohol. Complementation experiments demonstrated that both cDNA and genomic constructs derived from F5H from E. globulus under the control of the cinnamate 4-hydroxylase promoter from Arabidopsis thaliana, or a partial F5H promoter from E. globulus, can rescue the inability of the A. thaliana fah1-2 mutant to accumulate sinapate esters and syringyl lignin. E. globulus is a species widely used to obtain products that require lignin removal, and the results suggest that EglF5H is a good candidate for engineering efforts aimed at increasing the lignin syringyl unit content, either for kraft pulping or biofuel production.  相似文献   

18.
19.
Conformations of three pairs of dehydropeptides with the opposite configuration of the ΔPhe residue, Boc-Gly-ΔZ/EPhe-Phe-p-NA (Z- p -NA and E- p -NA), Boc-Gly-ΔZ/EPhe-Phe-OMe (Z-OMe and E-OMe), and Boc-Gly-ΔZ/EPhe-Phe-OH (Z-OH and E-OH) were compared on the basis of CD and NMR studies in MeOH, TFE, and DMSO. The CD results were used as the additional input data for the NMR-based calculations of the detailed solution conformations of the peptides. It was found that Z- p -NA, E- p -NA, Z-OMe, and Z-OH adopt the β-turn conformations and E-OMe and E-OH are unordered. There are two overlapping type III β-turns in Z- p -NA, type II’ β-turn in E- p -NA, and type II β-turn in Z-OMe and Z-OH. The results obtained indicate that in the case of methyl esters and peptides with a free carboxyl group, ΔZPhe is a much stronger inducer of ordered conformations than ΔEPhe. It was also found that temperature coefficients of the amide protons are not reliable indicators of intramolecular hydrogen bonds donors in small peptides.  相似文献   

20.

Key message

Genetic locus for tetralocular ovary ( tet - o ) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated.

Abstract

Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号