首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought is an important abiotic stress that limits the plant growth and productivity. Present investigation was aimed that plant growth-promoting rhizobacteria (PGPR) isolated from moisture-stressed area impart drought tolerance in plants and tryptophan may improve their efficiency. Pseudomonas sp. (1), Bacillus cereus and Bacillus pumilus (B. pumilus) were isolated from maize rhizosphere grown in irrigated fields, semi-arid region and arid region, respectively. Proteus sp. and Pseudomonas sp. (2) were isolated from rice rhizosphere grown in irrigated fields and raised bed. B. pumilus produced 5× more abscisic acid (ABA) in culture media than Pseudomonas sp. (1) by the addition of l-tryptophan. These inoculants also modulated the phytohormone content of maize leaves in a pot experiment. Higher ABA was produced by the application of B. pumilus and Pseudomonas sp. (2), while indole 3-acetic acid and gibberellic acid were found higher in Pseudomonas sp. (1) and Proteus sp. treated plants. Addition of l-tryptophan increased the concentration of all phytohormones in soil and leaves of maize. Maximum increase in relative water content, osmotic potential, protein content and photosynthetic pigments was recorded in B. pumilus treated maize plants. Under irrigated condition, response of Pseudomonas sp. co-inoculated with B. pumilus from arid field superseded while under drought stress the effect of later predominated. Bacillus pumilus can be used in the formulation of biofertilizer to alleviate drought stress in arid and semi-arid regions.  相似文献   

2.
Summary The pterocarpan phytoalexin conjugates medicarpin 3-O-glucoside-6-O-malonate and maackiain 3-O-glucoside-6-O-malonate were isolated from cell suspension cultures of chickpea (Cicer arietinum L.) cultivar ILC 3279 and structurally elucidated. Both pterocarpan conjugates are constitutive metabolites of the chickpea cell cultures. Upon application of an elicitor from yeast to the cell cultures a substantial increase in the level of the phytoalexin aglycones medicarpin and maackiain was observed although a delayed but significantly higher rise of the conjugates also occurred. The significance of the pterocarpan conjugates for phytoalexin production is discussed.Abbreviations MeGM medicarpin 3-O-glucoside-6-O-malonate - MaGM maackiain 3-O-glucoside-6-O-malonate - MeG medicarpin 3-O-glucoside - MaG maackiain 3-O-glucoside - FGM formononetin 7-O-glucoside-6-O-malonate - BGM biochanin A 7-O-glucoside-6-O-malonate - IFR NADPH: 2-hydroxyisoflavone oxidoreductase - PTS pterocarpan synthase - IGT UDP-glucose: isoflavone 7-O-glucosyltransferase - IMT malonyl-coA: isoflavone 7-O-glucoside-6 -O-malonyltransferase - RT retention time - sh shoulder - d duplette - m multiplette - s singulette  相似文献   

3.
Chickpea (Cicer arietinum L.) cell-suspension cultures were used to isolate one -1,3-glucanase (EC 3.2.1.29) and two chitinases (EC 3.2.1.14). The -1,3-glucanase (Mr = 36 kDa) and one of the chitinases (Mr = 32 kDa) belong to class I hydrolases with basic isoelectric points (10.5 and 8.5, respectively) and were located intracellularly. The basic chitinase (BC) was also found in the culture medium. The second chitinase (Mr = 28 kDa), with an acidic isoelectric point of 5.7, showed homology to N-terminal sequences of class III chitinases and represented the main protein accumulating in the culture medium. Polyclonal antibodies raised against the basic -1,3-glucanase (BG) and the acidic chitinase (AC) were shown to be monospecific. The anti-AC antiserum failed to recognize the BC on immune blots, confirming the structural diversity between class I and class III chitinases. Neither chitinase exhibitied lysozyme activity. All hydrolases were endo in action on appropriate substrates. The BC inhibited the hyphal growth of several test fungi, whereas the AC failed to show any inhibitory activity. Expression of BG activity appeared to be regulated by auxin in the cell culture and in the intact plant. In contrast, the expression of neither chitinase was apparently influenced by auxin, indicating a differential hormonal regulation of -1,3-glucanase and chitinase activities in chickpea. After elicitation of cell cultures or infection of chickpea plants with Ascochyta rabiei, both system were found to have hydrolase patterns which were qualitatively and quantitatively comparable. Finally, resitant (ILC 3279) and susceptible (ILC 1929) cultivars of chickpea showed no appreciable differences with regard to the time and amount of hydrolase accumulation after inoculation with spores of A. rabiei.Abbreviations AC acidic chitinase - BC basic chitinase - BG = basic -1,3-glucanase - CM-Chitin-RBV carboxymethylated-chitin-remazol brilliant violet - 2,4-D 2,4-dichlorophenoxyacetic acid - ILC international legume chickpea - Mr relative molecular mass - pI isoelectric point - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis We thank the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie for financial support and ICARDA, Aleppo, Syria, for the provision of seed material. We also thank Dr. B. Fritig (Institut de Biologie Moléculaire des Plantes, CNRS, Straßbourg, France) and Dr. F. Meins, Jr. (Friedrich-Miescher-Institut, Basel, Switzerland) for their kind gifts of antibodies.  相似文献   

4.
《FEBS letters》1987,214(1):101-106
Microsomal fractions derived from suspension-cultured chickpea (Cicer arietinum L.) cells induced for phytoalexin biosynthesis catalyzed the monohydroxylation of 4′-methoxyisoflavones (biochanin A and formononetin) in the 2′- and 3′-positions. The reactions depended on NADPH and molecular oxygen. Post-microsomal supernatants or microsomes from non-induced cells are without detectable activity in the hydroxylase assay. 4′-Hydroxyisoflavones (genistein and daidzein) were not hydroxylated to any significant extent. The occurrence of these hydroxylases proceeds concomitantly with the accumulation of two pterocarpan phytoalexins, medicarpin and maackiain, by induced cell cultures. The results are discussed with regard to the biosynthetic sequences in the conversion of isoflavones to pterocarpans.  相似文献   

5.
Two recombinant inbred line (RIL) populations derived from intraspecific crosses with a common parental line (JG62) were employed to develop a chickpea genetic map. Molecular markers, flower colour, double podding, seed coat thickness and resistance to fusarium wilt race 0 (FOC-0) were included in the study. Joint segregation analysis involved a total of 160 markers and 159 RILs. Ten linkage groups (LGs) were obtained that included morphological markers and 134 molecular markers (3 ISSRs, 13 STMSs and 118 RAPDs). Flower colour (B/b) and seed coat thickness (Tt/tt) appeared to be linked to STMS (GAA47). The single-/double-podding locus was located on LG9 jointly with two RAPD markers and STMS TA80. LG3 included a gene for resistance to FOC-0 (Foc01/foc01) flanked by RAPD marker OPJ20600 and STMS marker TR59. The association of this LG with FOC-0 resistance was confirmed by QTL analysis in the CA2139 × JG62 RIL population where two genes were involved in the resistance reaction. The STMS markers enabled comparison of LGs with preceding maps.  相似文献   

6.
7.
Coniferin specific- and isoflavone 7-glucoside specific -glucosidases have been localized in stem and root sections of chick pea (Cicer arietinum L.) seedlings by the indirect immunofluorometrical method. The coniferin specific -glucosidase has been found in the cell walls of the tracheary elements and of the endo-, epi-, and exodermis. All these tissues are known to contain either lignin or polymers, like suberin and cutin, which consist partially of phenylpropanoid elements. The localization of this -glucosidase is therefore in agreement with its postulated relationship to the phenylpropanoid metabolism. The isoflavone 7-glucoside specific -glucosidase, on the other hand, is predominantly located in the parenchymatic cortex cells, and obviously in the cytoplasm. These cells are known to contain the isoflavone formononetin, which has been shown to undergo turnover in chick pea seedlings. We therefore have good reason to assume that this -glucosidase is involved in the metabolism of the 7-glucoside of this isoflavone.Abbreviations SDS sodium dodecylsulfate - PBS physiological phosphate saline The results are part of the thesis of Gerd Burmeister, 1980, University of Münster  相似文献   

8.
Phosphate solubilizing bacteria (PSB) are known to convert the insoluble forms of phosphate to soluble one and make them available for plant uptake. The present study aimed to isolate PSB from the rhizosphere of chickpea (Cicer arietinum L. cv. GPF2) and examine their effect on the growth and seed number. The isolated PSB were analyzed for phosphate solubilization, indole acetic acid and siderophore production. PSB were characterized for phenotypic and biochemical properties, BIOLOG and whole-cell fatty acid methyl ester profile and found to be closely related to Pantoea cypripedii and Enterobacter aerogenes based on 16s rRNA gene sequencing. A high increase in growth of C. arietinum was observed when innoculated with PSB in tricalcium phosphate amended soils. A higher uptake in total P (53 %) of plants was observed when inoculated with mixture of P. cypripedii and E. aerogenes along with Rhizobium ciceri as compared to respective control plants which significantly increased the seed number (98.3 %) and seed weight (46.1 %). This study demonstrated the ability of novel PSB P. cypripedii along with E. aerogenes and R. ciceri to promote chickpea growth.  相似文献   

9.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

10.
Zusammenfassung Die Lokalisierung von -Glucosidasen in Wurzeln der Kichererbse [Cicer arietinum (L.)] wurde in einem einstufigen fluoreszenz-optischen Verfahren mit 4-Methyl-umbelliferyl-D-glucosid untersucht. Am Beispiel der Kichererbse wird gezeigt, daß in polyphenolhaltigen Pflanzen herkömmliche Azokupplungsverfahren zur Glucosidaselokalisierung nicht anwendbar sind. Die mit der neuen Methode erhaltenen Ergebnisse decken sich im wesentlichen mit denen aus vergleichbaren Untersuchungen und zeigen, daß -Glucosidasen nicht vorhanden sind. Aryl--Glucosidasen wurden vorwiegend im äußeren Cortexbereich gefunden und nehmen mengenmäßig zur Wurzelspitze hin zu.
Localization of -glucosidase in roots ofCicer arietinum (L.) by a fluorescence technique
Summary The localization of -glucosidases in roots of garbanzo beans [Cicer arietinum (L.)] has been investigated by a one-step fluorescence optical procedure using 4-methylumbelliferyl--D-glucoside. It is shown that the well known azo-coupling test for the localization of glucosidases cannot be applied in polyphenol containing plants. The results obtained with the new method are comparable with those described in other investigations and further show that -glucosidases are absent from the root tissues investigated. The aryl--glucosidases were mainly detected in the outer region of the cortex and quantitatively increase towards the root tip.
  相似文献   

11.
12.
Powdery mildew (PM) is a very important disease of cucumber (Cucumis sativus L.). Resistant cultivars have been deployed in production for a long time, but the genetic mechanisms of PM resistance in cucumber are not well understood. A 3-year QTL mapping study of PM resistance was conducted with 132 F2:3 families derived from two cucumber inbred lines WI 2757 (resistant) and True Lemon (susceptible). A genetic map covering 610.4 cM in seven linkage groups was developed with 240 SSR marker loci. Multiple QTL mapping analysis of molecular marker data and disease index of the hypocotyl, cotyledon and true leaf for responses to PM inoculation identified six genomic regions in four chromosomes harboring QTL for PM resistance in WI 2757. Among the six QTL, pm1.1 and pm1.2 in chromosome 1 conferred leaf resistance. Minor QTL pm3.1 (chromosome 3) and pm4.1 (chromosome 4) contributed to disease susceptibility. The two major QTL, pm5.1 and pm5.2 were located in an interval of ~40 cM in chromosome 5 with each explaining 21.0–74.5 % phenotypic variations. Data presented herein support two recessively inherited, linked major QTL in chromosome 5 plus minor QTL in other chromosomes that control the PM resistance in WI 2757. The QTL pm5.2 for hypocotyl resistance plays the most important role in host resistance. Multiple observations in the same year revealed the importance of scoring time in the detection of PM resistance QTL. Results of this study provided new insights into phenotypic and genetic mechanisms of powdery mildew resistance in cucumber.  相似文献   

13.
Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R 2 ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants’ capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3–6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.  相似文献   

14.
-Glucosidase (-D-glucoside glucohydrolase, E.C. 3.2.1.21, -Glu) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). The pattern of Mendelian inheritance demonstrated for -GLU variants indicated that they are under nuclear gene control. Twenty-two allelic forms at a single locus were identified in the materials studied by starch gel electrophoresis. Genetic data indicate that -GLU in maize is functionally a dimer. Variation of -GLU isozymes in 51 racial collections of maize from Mexico showed little correlation with morphological or geographical data. In 39 collections from Central America, variation patterns appeared to have some association with altitude.This work was supported in part by NIH Research Grant GM 11546.Paper No. 5040 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina.  相似文献   

15.
The phylogeography of the sable, which is a commercially valuable species, is extremely complicated and poorly investigated. Specifically, the effects of factors such as the range dynamics of the sable during the Pleistocene Epoch, the localization of glacial refugia, species distribution pattern in Holocene, and recent dramatic population decline, along with massive reacclimatization measures, on the species phylogeography remain unclear. Based on the sequence analysis of the control region of mitochondrial DNA from sables that inhabit different parts of the species range, a suggestion was made of the considerably high Pleistocene genetic diversity in sable, which was subsequently lost. The initial diversity of mitochondrial lineages is mostly preserved in the Urals, while in the eastern part of the range, it seems to have been depleted as early as before the last glacial maximum. On the other hand, the even greater depletion of the mitochondrial lineages observed in some populations of central Siberia can be associated with the dramatic population decline at the turn of the 20th century.  相似文献   

16.
A better understanding of the genetic control of tree architecture would potentially allow improved tailoring of newly bred apple cultivars in terms of field management aspects, such as planting density, pruning, pest control and disease protection. It would also have an indirect impact on yield and fruit quality. The Columnar (Co) locus strongly suppresses lateral branch elongation and is the most important genetic locus influencing tree architecture in apple. Co has previously been mapped on apple linkage group (LG) 10. In order to obtain fine mapping of Co, both genetically and physically, we have phenotypically analysed and screened three adult segregating experimental populations, with a total of 301 F1 plants, and one substantial 3-year old population of 1,250 F1 plants with newly developed simple sequence repeat (SSR) markers, based on the ‘Golden delicious’ apple genome sequence now available. Co was found to co-segregate with SSR marker Co04R12 and was confined in a region of 0.56 cM between SSR markers Co04R11 and Co04R13, corresponding to 393 kb on the ‘Golden delicious’ genome sequence. In this region, 36 genes were predicted, including at least seven sequences potentially belonging to genes that could be considered candidates for involvement in control of shoot development. Our results provide highly reliable, virtually co-segregating markers that will facilitate apple breeding aimed at modifications of the tree habit and lay the foundations for the cloning of Co.  相似文献   

17.
Abstract

This paper presents an interdisciplinary approach to crop improvement that links physiology with plant breeding and simulation modelling to enhance the selection of high‐yielding, drought‐tolerant varieties. In a series of field experiments in Queensland, Australia, we found that the yield of CIMMYT wheat line SeriM82 ranged from 6% to 28% greater than the current cultivar Hartog. Physiological studies on the adaptive traits revealed that SeriM82 had a narrower root architecture and extracted more soil moisture, particularly deep in the profile. Results of a simulation analysis of these adaptive root traits with the cropping system model APSIM for a range of rain‐fed environments in southern Queensland indicated a mean relative yield benefit of 14.5% in water‐deficit seasons. Furthermore, each additional millimetre of water extracted during grain filling generated an extra 55 kg ha?1 of grain yield. Further root studies of a large number of wheat genotypes revealed that wheat root architecture is closely linked to the angle of seminal roots at the seedling stage – a trait which is suitable for large‐scale and cost‐effective screening programmes. Overall, our results suggest that an interdisciplinary approach to crop improvement is likely to enhance the rate of yield improvement in rain‐fed crops.  相似文献   

18.
Physiology and Molecular Biology of Plants - Drought stress is one of the most prevalent environmental factors limiting faba bean (Vicia faba L.) crop productivity. β-aminobutyric acid (BABA)...  相似文献   

19.
Quantitative trait loci (QTL) for growth traits and water-use efficiency have been identified in two water regimes (normal and drought-treated) and for a treatment index. A tetraploid hybrid F2 population originating from a cross between a Salix dasyclados clone (SW901290) and a Salix viminalis clone (Jorunn) was used in the study. The growth response of each individual including both above and below ground dry-matter production (i.e. shoot length, shoot diameter, aboveground and root dry weight, internode length, root dry weight/total dry weight, relative growth rate and leaf nitrogen content) was analysed in a replicated block experiment with two water treatments. A composite interval mapping approach was used to estimate number of QTL, the magnitude of the QTL and their position on genetic linkage maps. QTL specific for each treatment and for the treatment index were found, but QTL common across the treatments and the treatment index were also detected. Each QTL explained from 8% to 29% of the phenotypic variation, depending on trait and treatment. Clusters of QTL for different traits were mapped close to each other at several linkage groups, indicating either a common genetic base or tightly linked QTL. Common QTL identified between treatments and treatment index in the complex trait dry weight can be useful tools in the breeding and selection for drought stress tolerance in Salix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号