首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

For the first time the putative NSP2 gene in chickpea has been identified using pairs of NILs differing for the Rn1 / rn1 nodulation gene that was located in LG5 of chickpea genetic map.

Abstract

An intraspecific cross between the mutant non-nodulating genotype PM233, carrying the recessive gene rn1, and the wild-type CA2139 was used to develop two pairs of near-isogenic lines (NILs) for nodulation in chickpea. These pairs of NILs were characterized using sequence tagged microsatellite site (STMS) markers distributed across different linkage groups (LGs) of the chickpea genetic map leading to the detection of polymorphic markers located in LG5. Using this information, together with the genome annotation in Medicago truncatula, a candidate gene (NSP2) known to be involved in nodulation pathway was selected for mapping in chickpea. The full length sequence obtained in chickpea wild-type (CaNSP2) was 1,503 bp. Linkage analysis in an F3 population of 118 plants derived from the cross between the pair of NILS NIL7-2A (nod) × NIL7-2B (non-nod) revealed a co-localization between CaNSP2 and Rn1 gene. These data implicate the CaNSP2 gene as a candidate for identity to Rn1, and suggest that it could act in the nodulation signaling transduction pathway similarly to that in other legumes species.  相似文献   

2.
The reaction of [VCl3(PMe2Ph)3] with HSSSSH (where the HS are thiophenolate and the S′ thioether functions, respectively), H21, yields [VCl(μ-SSSS)]2 (3) with one of the thiolate groups of each of the two ligands in the bridging mode. Reaction of Na21 with [VOCl2(thf)2] leads to a polymeric product of composition [VO(SSSS)]x (4). The products obtained from the reaction between [VOCl2(thf)2] and NaSNNSNa, Na22, (S is thiophenolate, N the amine function) depend on subtle changes in the diamine backbone of this ligand: If the amine functions are linked by -CH2CH2– (2a), the tetranuclear VIV complex [V(SNNS)μ-O]4 (5) is formed alongside the VIII complex [VCl(SNNS)]. If the backbone is -CH(Me)CH(Me)- (2b), [VO(SNNS)] (7) and the dinuclear, asymmetrically oxo-bridged VIV complex [{(SNN S)(thf)V}μ-O{V(SNN S)}] (8) are obtained. In 8, one amine of each of the two ligands is deprotonated to the amide group. In either case, the complexation is accompanied by oxidation of the thiolates to disulfides, leading to the generation of teraazatetrathio-cycloeicosanes (6a/b). Compounds 5 and 8·2THF have been structurally characterized by X-ray analyses. The connectivities have further been established for 3·2CH2Cl2 and for 6b, which exhibits the same conformation as formally characterized 6a. The cluster compound 5 is stabilized by an extended intramolecular N-H...O and N-H...S) hydrogen-bonding network. In 7·2THF, one of the THFs of crystallization is hydrogen-bonded to the NH of the penta-coordinated {VO(SNN S)} moiety; further, there is an intramolecular hydrogen bond between one of the thiolates of this tetragonal-pyramidal half of the molecule and the NH of the octahedral {VO(SNN S)thf} half. The generation of the ligand 2b from its precursor compound, the zinc complex [Zn(SNNS)] (9) leads to the structural characterization of 9·CH3OH with a large SZnS bite angle and a strong hydrogen bond between the methanolic OH and one of the thiolate sulfurs. The relevance of these compounds in biological systems is discussed.  相似文献   

3.
Microbial transformation of 20(S)-protopanaxadiol (1) by Mucor racemosus AS 3.205 yielded two novel hydroperoxylated metabolites and three known hydroxylated metabolites. The structures of the metabolites were identified as 26-hydroxyl-20(S)-protopanaxadiol (2), 23,24-en-25-hydroxyl-20(S)-protopanaxadiol (3), 25,26-en-24(R)-hydroperoxyl-20(S)-protopanaxadiol (4), 23,24-en-25-hydroperoxyl-20(S)-protopanaxadiol (5), and 25-hydroxyl-20(S)-protopanaxadiol (6). 4 and 5 are new compounds. Metabolites 2, 4, and 5 showed the more potent inhibitory effects against DU-145 and PC-3 cell lines than the substrate.  相似文献   

4.
5.
Seven hydroxylates of 20(S)-protopanaxatriol (1) transformed by Absidia corymbifera AS 3.3387 were isolated and identified by spectral methods including 2D-NMR. Among them, 7β-hydroxyl-20(S)-protopanaxatriol (2), 7α-hydroxyl-20(S)-protopanaxatriol (3), and 7β, 15α-dihydroxyl-20(S)-protopanaxatriol (7) are new compounds. The metabolites 2, 6, 7, and 8 showed the more potent inhibitory effects against DU-145 and PC-3 cell lines than the substrate.  相似文献   

6.
In the quest for complexes modelling functional characteristics of metal sulfur oxidoreductases, a series of molybdenum nitrosyl complexes with sulfur-dominated coordination sphere was synthesized. Treatment of the 16, 17 and 18 valence electron (VE) complexes [Mo(L)(NO)('S4')] (1–3) [L?=?SPh (1), PMe3 (2), NO (3), 'S4'2–?=?1,2-bis-(2-mercaptophenylthio) ethane(2-)] with the Brönsted acid HBF4 resulted in formation of different types of products. 1 and 3 were reversibly protonated at one thiolate atom of the 'S4'2– ligand;2, however, yielded the phosphonium salt [HPMe3]BF4 and the dinuclear [Mo(NO)('S4')]2. Alkylation of 1, 2 and 3 by Me3OBF4 or Et3OBF4 uniformly resulted in high yields of [Mo(L)(NO)(R-'S4')]BF4 complexes [L?=?SPh: R?=?Me (5), Et (6); L?=?PMe3: R?=?Me (7); L?=?NO: R?=?Me (8), Et (9)] in which one thiolate atom of the 'S4'2– ligand had become alkylated; the NMR spectra of 5, 6, 8 and 9 indicated that only one out of four theoretically possible diastereoisomers had formed. 5 and 6 were characterized also by single-crystal X-ray structure analyses. A comparison of ν(NO) bands and redox potentials (cyclic voltammetry) of parent complexes and alkylated derivatives showed that alkylation leads to a decrease in electron density at the molybdenum center and to a positive shift in redox potentials. The 16 VE complex 1 could be reduced, also chemically, to give the corresponding 17 VE anion [1], and inserted elemental sulfur into the Mo-SPh bond, forming the 18 VE phenylperthio complex [Mo(η2–SSPh)(NO)('S4')] (11) which, upon reaction with PPh3, gave SPPh3 and regenerated the parent complex 1. These results are discussed with regard to the sequence of proton and electron transfer steps occurring in substrate conversions catalyzed by metal sulfur oxidoreductases.  相似文献   

7.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

8.
9.

Key message

The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible.

Abstract

Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.
  相似文献   

10.

Key message

This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin.

Abstract

Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.
  相似文献   

11.

Key message

NO generation is studied in the protoplast chloroplasts. NO, ONOO ? and ROS (O 2 ? and H 2 O 2 ) are generated in chloroplasts. Nitric oxide synthase-like protein appears to be involved in NO generation.

Abstract

Nitric oxide stimulates chlorophyll biosynthesis and chloroplast differentiation. The present study was conducted to better understand the process of NO generation in the leaf chloroplasts and protoplasts. NO, peroxynitrite and superoxide anion were investigated in the protoplasts and isolated chloroplasts using specific dyes, confocal laser scanning and light microscopy. The level of NO was highest after protoplast isolation and subsequently decreased during culture. Suppression of NO signal in the presence of PTIO, suggests that diaminofluorescein-2 diacetate (DAF-2DA) detected NO. Detection of peroxynitrite, a reaction product of NO and superoxide anion, further suggests NO generation. Moreover, generation of NO and peroxynitrite in the chloroplasts of wild-type Arabidopsis and their absence or weak signals in the leaf-derived protoplasts of Atnoa1 mutants confirmed the reactivity of DAF-2DA and aminophenyl fluorescein to NO and peroxynitrite, respectively. Isolated chloroplasts also showed signal of NO. Suppression of NO signal in the presence of 100 μM nitric oxide synthase inhibitors [l-NNA, Nω-nitro-l-arginine and PBIT, S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea] revealed that nitric oxide synthase-like system is involved in NO synthesis. Suppression of NO signal in the protoplasts isolated in the presence of cycloheximide suggests de novo synthesis of NO generating protein during the process of protoplast isolation. Furthermore, the lack of inhibition of NO production by sodium tungstate (250 μM) and inhibition by l-NNA, and PBIT suggest involvement NOS-like protein, but not nitrate reductase, in NO generation in the leaf chloroplasts and protoplasts.  相似文献   

12.
Chemical investigation of a marine microalga, Nannochloropsis granulata, led to the isolation of four digalactosyldiacylglycerols namely, (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (1), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (3), and (2S)-1,2-bis-O-eicosapentaenoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (4), together with their monogalactosyl analogs (58). Among the isolated galactolipids 2 and 3 were new natural products. Complete stereochemistry of 1, 4, 5, 7, and 8 was determined for the first time by both spectroscopic techniques and classical degradation methods. Both mono- and digalactosyldiacylglycerols isolated from N. granulata possessed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression indicating the possible use as anti-inflammatory agents.  相似文献   

13.
In the Candida antarctica lipase B-catalyzed hydrolysis of (R,S)-azolides derived from (R,S)-N-protected proline in water-saturated methyl tert-butyl ether (MTBE), high enzyme activity with excellent enantioselectivity (V S V R ?1 ?>?100) for (R,S)-N-Cbz-proline 1,2,4-triazolide (1) and (R,S)-N-Cbz-proline 4-bromopyrazolide (2) was exploited in comparison with their corresponding methyl ester analog (3). Changing of the substrate structure, water content, solvent, and temperature was found to have profound influences on the lipase performance. On the basis of enzyme activity and enantioselectivity and solvent boiling point, the best reaction condition of using 1 as the substrate in water-saturated MTBE at 45 °C was selected and further employed for the successful resolution of (R,S)-N-Cbz-pipecolic 1,2,4-triazolide (5) and (R,S)-N-Boc-nipecotic 1,2,4-triazolide (9). Moreover, more than 89.1 % recovery of remained (R)-1 is obtainable in five cycles of enzyme reusage, when pH 7 phosphate buffers were employed as the extract at 4 °C.  相似文献   

14.
Cyanoprokaryote assemblages in eight productive tropical Brazilian waters   总被引:4,自引:0,他引:4  
Huszar  V. L. M.  Silva  L. H. S.  Marinho  M.  Domingos  P.  Sant'Anna  C. L. 《Hydrobiologia》2000,424(1-3):67-77
  相似文献   

15.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

16.
A MeOH extract of cultivated Chondrus crispus showed dose-dependent nitric oxide (NO) inhibition of lipopolysaccharide-induced NO production in macrophage RAW264.7 cells. NO inhibition-guided fractionation of the extract led to identification of eicosapentaenoic acid (EPA, 1), arachidonic acid (AA, 2), lutein (3), and eight galactolipids as active components. Based on spectral analysis, the isolated galactolipids were identified as (2S)-1,2-bis-O-eicosapentaenoyl-3-O-β-d-galactopyranosylglycerol (4), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (5), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetranoyl)-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (6), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (7), (2S)-1,2-bis-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (8), (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (9), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (10), and (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (11). All the isolated compounds showed significant NO inhibitory activity. This is the first report of the isolation and identification of individual galactolipids from C. crispus. Moreover, (2S)-1,2-bis-O-arachidonoyl ?3-O-β-d-galactopyranosylglycerol (8) is a novel compound.  相似文献   

17.
The geometric and electronic structures, absorption spectra, transporting properties, chemical reactivity indices and electrostatic potentials of the planar three-coordinate organoboron compounds 1-2 and twisted reference compound Mes 3 B, have been investigated by employing density functional theory (DFT) and conceptual DFT methods to shed light on the planarity effects on the photophysical properties and the chemical reactivity. The results show that the planar compounds 1-2 exhibit significantly lower HOMO level than Mes 3 B, owing to the stronger electronic induction effect of boron centers. This feature conspicuously induces a blue shifted absorption for 1, although 1 seemingly possesses more extended conjugation framework than Mes 3 B. Importantly, the reactivity strength of the boron atoms in 1-2 is much lower than that in Mes 3 B, despite the fact that the tri-coordinate boron centers of 1-2 are completely naked. The interesting and abnormal phenomenon is caused by the strong p-π electronic interactions, that is, the empty p-orbital of boron center is partly filled by π-electron of the neighbor carbon atoms in 1-2, which are confirmed by the analysis of Laplacian of the electron density and natural bond orbitals. Furthermore, the negative electrostatic potentials of the boron centers in 1-2 also interpret that they are not the most preferred sites for incoming nucleophiles. Moreover, it is also found that the planar compounds 1-2 can act as promising electron transporting materials since the internal reorganization energies for electron are really small.
Figure
The planar effects significantly affect the frontier molecular orbital levels, absorption wavelengths, transporting properties, and chemical reactivities of compounds 1-2. The underlying origin has been revealed by density functional theory and conceptual density functional theory calculations  相似文献   

18.

Key message

We conducted molecular characterization of Nicaraguan Pinus tecunumanii populations using microsatellite markers. Populations possess considerable genetic variation but there are risks associated with inbreeding and population fragmentation.

Abstract

We carried out a molecular characterization of three natural populations of Pinus tecunumanii using nine microsatellite markers. All studied populations occur in Nicaragua, where the species has declined primarily due to human-influenced factors. The results showed that there is a high amount of genetic variation in populations (expected heterozygosities 0.775–0.841), populations do not show significant differentiation (mean F ST 0.0073), apparently due to frequent gene flow or a more continuous distribution and homogenous genetic composition in the past, and inbreeding is common in all populations (F IS 0.705–0.780). The Structure analysis revealed that there is no evident clustering pattern among P. tecunumanii individuals. Although all studied populations possess a considerable amount of genetic variation, risks associated with inbreeding and population fragmentation should be acknowledged and a conservation strategy developed to safeguard the genetic resources of P. tecunumanii.  相似文献   

19.

Key message

Provide evidence that the Brassica B genome chromosome B3 carries blackleg resistance gene, and also the B genome chromosomes were inherited several generations along with B. napus chromosomes.

Abstract

Blackleg disease caused by fungus Leptosphaeria maculans causes significant yield losses in Brassica napus. Brassica carinata possesses excellent resistance to this disease. To introgress blackleg resistance, crosses between B. napus cv. Westar and B. carinata were done. The interspecific-hybrids were backcrossed twice to Westar and self-pollinated three times to produce BC2S3 families. Doubled haploid lines (DH1) were produced from one blackleg resistant family. SSR markers were used to study the association between B genome chromosome(s) and blackleg resistance. The entire B3 chromosome of B. carinata was associated with blackleg resistance in DH1. A second DH population (DH2) was produced from F1s of resistant DH1 lines crossed to blackleg susceptible B. napus cv. Polo where resistance was found to be associated with SSR markers from the middle to bottom of the B3 and top of the B8 chromosomes. The results demonstrated that the B3 chromosome carried gene(s) for blackleg resistance. Genomic in situ hybridization (GISH) and GISH-like analysis of the DH2 lines revealed that susceptible lines, in addition to B. napus chromosomes, possessed one pair of B genome chromosomes (2n = 40), while resistant lines had either one (2n = 40) or two pairs (2n = 42) of B chromosomes. The molecular and GISH data suggested that the B chromosome in the susceptible lines was B7, while it was difficult to confirm the identity of the B chromosomes in the resistant lines. Also, B chromosomes were found to be inherited over several generations along with B. napus chromosomes.  相似文献   

20.

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号