首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iodothyronine monodeiodinase activities in homogenates of cultured monkey hepatocarcinoma cells were measured by the deiodination of [3,5-125I]triido-l-thyronine or 3-[3′5′-125I]triido-l-thyronine (phenolic ring-labeled ‘reverse’ triiodothyronine). The assay system utilized a small ion-exchange column (AG50W-X4, 0.9×~1 cm) to measure 125I?. Both deiodinases were destroyed by boiling for 1 min.Maximal nonphenolic ring deiodination was observed at pH 7.9 whereas maximal phenolic ring deiodination was at pH 6.3. Both reactions were enhanced strongly by dithiothreitol (0.1–5 mM), and slightly by 5 mM β-mercaptoethanol. Phenolic ring deiodination was strongly inhibited by 0.1 mM propylthiouracil. Nonphenolic ring deiodination was accelerated by EDTA (1.2 mM) and inhibited by Mg2+ (5 mM). Methylmercaptoimidazol and Mg2+, Ca2+ and Mn2+ (0.1–1.0 mM) had little or no effect on either reaction, but Zn2+ (0.1 mM) strongly inhibited both.Both reactions were inhibited by excess iodothyronine analogues at 10 mM to 10μM, and thyroxine was shown to be a competitive inhibitor in both cases. On the basis of relative affinities and inhibitory effects, it appears that the order of affinity for the phenolic ring deiodinase is 3,3′,5′-triiodo-l-thyronine-(rT3) > l-thyroxine(T4) > 3,4,3′-triido-l-thyronine(T3), whereas for the nonphenolic ring deiodinase the order is T3 > T4 > rT3. Diiodotyrosine did not affect their deiodination.  相似文献   

2.
The cultured rat hepatoma cell (R117-21B) homogenates metabolized 3,[3′,5′-125I]triiodothyronine by phenolic ring deiodination and produced radioactive iodide and 3,3′-diiodothyronine. Thyroxine (T4) was converted to 3,3′,5-triidothyronine (T3). The production of 125I presented the deiodinase activity. The optimal pH for phenolic ring deiodination was observed to be pH 6.0–7.0. This enzyme reaction was accelerated by dithiothreitol. Propylthiouracil strongly inhibited the phenolic ring deiodination at 0.1 mM, whereas an effect of 20 mM methylmercaptoimidazol on the deiodination was very weak or absent.Excess unlabeled iodothyronines (T4, T3 and 3,5-diiodo-l-thyronine inhibited the phenolic ring deiodination of labeled 3,3′,5′-triiodothyronine, althought their inhibitory effect was slightly different. Triiodothyroacetic acid was a better inhibitor than T3. Diiodotyrosine did not affect phenolic ring deiodination in cultured rat hepatoma cell homogenates.Phenolic and nonphenolic ring deiodinase activities of cultured monkey hepatocarcinoma cell and rat liver homogenates were also studied by the use of 3,[3′,5′-125I]triiodothyronine and [3,5-125I]thyroxine, respectively. Both deiodinase activities were observed in particulate fractions (mitochondrial and microsomal) of cultured cell and rat liver homogenates.  相似文献   

3.
Monkey hepatocarcinoma cell monolayer cultures (NCLP-6E) metabolized thyroxine, 3,5,3'-triiodothyronine, 3,3',5'-triiodothyronine and 3,3'-diiodothyronine by phenolic and nonphenolic ring deiodinations and sulfation of the deiodinated products, as shown in previous work with this system. The effects of the antithyroid drugs, propylthiouracil (PTU) and methylmercaptoimidazole (MMI), on these processes was investigated. PTU, at 0.1 and 1 mM, inhibited only phenolic ring deiodination. MMI at 1 mM had no effect, but 32 mM inhibited deiodination of both rings as well as sulfation. The findings suggest that the increased serum rT3 level caused by PTU in vivo is the result of decreased rT3 deiodination, in contrast to the increased rT3 production which is caused by starvation.  相似文献   

4.
Both phenolic and nonphenolic ring deiodinase activities in monkey hepatocarcinoma cells (NCLP-6E) were increased by addition of serum in a concentration-dependent manner: the stimulatory effect of serum was evident at a concentration as low as 1.5%, and was maximal at 5%. Lineweaver-Burk analysis showed that the increases in the deiodinase activities are due to the increase in Vmax, but not in Km. The addition of cycloheximide at concentrations ranging from 0.1 to 50 micrograms/ml inhibited the stimulatory effect of serum on phenolic ring deiodinase activity progressively. On the other hand, nonphenolic ring deiodinase activity was increased as much as 4-fold by the addition of 0.5-5 micrograms/ml cycloheximide together with 0.5% serum; a high concentration of the drug, 50 micrograms/ml, however, did not elicit such an increase. Actinomycin D at 5 micrograms/ml completely abolished the increase in nonphenolic ring deiodinase activity by serum or cycloheximide. In addition, actinomycin D inhibited the increase in phenolic ring deiodinase activity by serum in a dose-dependent manner at concentrations ranging from 0.05 to 5 micrograms/ml. It is concluded that phenolic and nonphenolic ring deiodinases are regulated by different mechanisms in monkey hepatocarcinoma cells (NCLP-6E).  相似文献   

5.
Studies were carried out to compare the 5' deiodination reactions of thyroxine (T4) and 3, 3', 5'-triiodothyronine (rT3) in rat liver and kidney homogenates. The 5'-deiodinase activity was assayed by the 3, 5, 3'-triiodothyronine (T3) produced from T4 or by the 125I-iodide released from 125I-rT3. The two 5' deiodination reactions had similar ranges of optimal pH, incubation temperature, and apparent Km, T4 1.1 and rT3 1.3 microM. However, the apparent Vmax values for T4 and rT3 deiodination reactions were 0.9 and 220 pmol/mg protein/min, respectively. Both reactions were stimulated by thiol reagent but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil (PTU) on the 5' deiodination of rT3 was 50 times as great as that of T4. Only the 5' deiodination of rT3 was inhibited by low concentrations of calcium and magnesium. The 5' deiodination reactions in the liver and kidney tissues showed very similar substrate specificity. However, only the hepatic deiodinase activity was reduced to 60-65% of the control value after fasting, whereas the renal 5'-deiodinase activity was unaffected or even enhanced by fasting up to 72 hours. The results showed the existence of a diverse and complex 5' deiodination system in the rat tissues which is comprised of multiple similar but distinct 5'-deiodinase enzymes with respect to their substrate specificity, tissue specificity and regulation.  相似文献   

6.
S Kobayshi  Y Gao  R L Ong  C S Pittman 《Life sciences》1986,38(24):2231-2238
Studies were carried out to compare the 5'-deiodination reactions of thyroxine (T4) and 3,3'-5'-triiodothyronine (rT3) in 2.5% rat liver homogenates. The 5'-deiodinase activity was assayed by the 3,5,3'-triiodothyronine (T3) produced from T4 or by 125I-rT3. Under our experimental conditions, the two 5'-monodeiodination reactions resulted in similar apparent KMs: 1.5 microM for T4 and 1.1 microM for rT3. However, the apparent Vmax values of T4 and rT3 deiodination reactions were, respectively, 0.91 and 222 pmol/mg protein/min. Both reactions were stimulated by thiol reagents but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil on the 5'-deiodination of rT3 was at least 50 fold greater than that of T4. The divalent ion requirement of the deiodination system was tested with CaCl2, MgCl2, and ZnCl2 at a range of concentrations. Zinc ion appeared to be a potent inhibitor in both T4 and rT3 deiodination systems. Only the 5'-deiodination of rT3 was inhibited slightly by low concentrations of calcium and magnesium ions. Our results suggest that based on their apparently distinct regulation mechanisms, the 5'-monodiodination of T4 and rT3 in rat liver homogenates is likely mediated by more than one enzyme, despite the similarity of observed KMs.  相似文献   

7.
The influence of an inhibitor of iodothyronines' extrathyroidal conversion on T4, T3 and rT3 deiodination by adult pig pituitary and cerebral cortical homogenates has been investigated. The homogenates were incubated with T4, T3 and rT3 in the presence of 5 mM dithiothreitol and evaporated diethyl ether extracts of sera obtained from fed and starved (1-14 days) rabbits. The extracts had no influence either on T4 to T3 or on T4 to rT3 conversion in cerebral cortex. Deiodination of rT3 to 3,3'-T2 in that tissue was significantly inhibited only by the extracts of sera obtained from 4 days starved rabbits. Inner-ring deiodination of both rT3 and T3 was not changed by the extracts got from short-term (1-4 days) fasted animals but was significantly reduced by the extracts from long-term (7-14 days) food-deprived subjects. Pituitary conversion of T4 to T3 was diminished by 35% in the presence of sera extracts gained from 1-9 days fasted rabbits and by about 50% on day 14 of fasting, but only the latter change was statistically significant. Short-term fasting inhibited T4 to rT3 conversion on days 2 and 4. Both deiodinations of rT3 and 5-deiodination of T3 were affected by extracts of sera collected during long-term fasting.  相似文献   

8.
Monodeiodination of T4 to T3 and rT3 in the intact cells of dog renal tubuli and glomeruli was investigated. The tubuli and glomeruli were obtained by a sieve method. T4 (2 micrograms/ml) was incubated in Tris-HCl buffer, pH 7.5, with renal cells (180 micrograms protein/ml) and 5 mM DTT for 1 h at 37 degrees C and the T3 and rT3 generated during incubation were measured by specific radioimmunoassays. In order of decreasing activity, dog renal cortical tubuli, cortical homogenate, glomeruli and medullary tubuli were capable of converting T4 to T3. Net rT3 production from T4 in cortical tubuli was also greater than that in cortical homogenate. The conversion of T4 to T3 and also to rT3 in cortical tubuli was enzymatic in nature, since the reactions showed dependence on time and protein concentration; instability to heating; temperature and pH optimum. The production of T3 and rT3 from T4 was maximum at pH 6.5 and at pH 9.5, respectively, indicating that two different enzymic systems, a 5- and a 5'-monodeiodinase, might be involved in the deiodination of the tyrosyl and the phenolic ring of T4 in dog kidney.  相似文献   

9.
The effect of starvation on thyroid hormone metabolism was studied in monkey hepatocarcinoma monolayer cultures. Nonphenolic ring monodeiodination of thyroxine, 3, 5, 3'-triiodothyronine and 3, 3'-diiodothyronine was accelerated. Since phenolic ring deiodination of 3, 3',5'-triiodothyronine (reverse T3) was unaffected, this metabolite accumulated in the medium during thyroxine metabolism. This suggests that increased serum reverse T3 in malnourished humans may be caused by enhanced deiodination of thyroxine rather than decreased rT3 catabolism.  相似文献   

10.
When monkey hepatocarcinoma cells (NCLP-6E) were treated with 10% of various serum preparations for 24 h at 37 degrees C, nonphenolic ring deiodinase activity increased 2.0- to 2.3-fold. Phenolic ring deiodinase activity also increased 0.9- to 2.1-fold. Dialysis of the sera enhanced the effect on deiodinase activities in some preparations, but reduced activity in other serum preparations. Similarly, a 1.3- to 3.1-fold increase in phenolic ring deiodinase activity was observed in rat hepatoma cells (R-Y121B). In this case, dialysis usually reduced the effect of the sera. It is concluded that both large molecule(s) (undialyzable) and small molecule(s) (dialyzable) in serum contribute to the regulation of phenolic and nonphenolic ring deiodinase activity in NCLP-6E and R-Y121B cells.  相似文献   

11.
The regulation of energy homeostasis by thyroid hormones is unquestionable, and iodothyronine deiodinases are enzymes involved in the metabolic activation or inactivation of these hormones at the cellular level. T3 is produced through the outer ring deiodination of the prohormone T4, which is catalyzed by types 1 and 2 iodothyronine deiodinases, D1 and D2. Conversely, type 3 iodothyronine deiodinase (D3) catalyzes the inner ring deiodination, leading to the inactivation of T4 into reverse triiodothyronine (rT3). Leptin acts as an important modulator of central and peripheral iodothyronine deiodinases, thus regulating cellular availability of T3. Decreased serum leptin during negative energy balance is involved in the down regulation of liver and kidney D1 and BAT D2 activities. Moreover, in high fat diet induced obesity, instead of increased serum T3 and T4 secondary to higher circulating leptin and thyrotropin levels, elevated serum rT3 is found, a mechanism that might impair the further increase in oxygen consumption.  相似文献   

12.
We measured low substrate (<1 nM) thyroid hormone (TH) deiodination activities in liver, muscle, intestine, and brain microsomes of Atlantic hagfish fasted for 2 weeks and found extremely low thyroxine (T(4)) outer-ring deiodination (T(4)ORD) and inner-ring deiodination (T(4)IRD) as well as 3,5,3'-triiodothyronine (T(3)) IRD activities. T(3)ORD, 3',5'-triiodothyronine (rT(3)) ORD and rT(3)IRD activities were undetectable. Hagfish deiodinating pathways resembled those of teleosts in requiring a thiol cofactor (dithiothreitol, DTT) and in their inhibition by established deiodinase inhibitors and by TH analogues. However, under optimal pH and DTT conditions intestinal T(4)ORD activity exceeded that of liver about 10-fold. This contrasts with the situation in teleosts but resembles that reported recently in larval and adult lampreys, suggesting the intestine as a primary site of TH deiodination in lower craniates.  相似文献   

13.
The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.  相似文献   

14.
Iodothyronine deiodinases determine the biological activity of thyroid hormones. Despite the homology of the catalytic sites of mammalian and teleostean deiodinases, in-vitro requirements for the putative thiol co-substrate dithiothreitol (DTT) vary considerably between vertebrate species. To further our insights in the interactions between the deiodinase protein and its substrates: thyroid hormone and DTT, we measured enzymatic iodothyronine 5′-deiodination, Dio1 and Dio2 mRNA expression, and Dio1 affinity probe binding in liver and kidney preparations from a freshwater teleost, the common carp (Cyprinus carpio L.). Deiodination rates, using reverse T3 (rT3, 3,3′,5′-triiodothyronine) as the substrate, were analysed as a function of the iodothyronine and DTT concentrations. In kidney rT3 5′-deiodinase activity measured at rT3 concentrations up to 10 μM and in the absence of DTT does not saturate appreciably. In the presence of 1 mM DTT, renal rT3 deiodination rates are 20-fold lower. In contrast, rT3 5′-deiodination in liver is potently stimulated by 1 mM DTT. The marked biochemical differences between 5′-deiodination in liver and kidney are not associated with the expression of either Dio1 or Dio2 mRNA since both organs express both deiodinase types. In liver and kidney, DTT stimulates the incorporation of N-bromoacetylated affinity labels in proteins with estimated molecular masses of 57 and 55, and 31 and 28 kDa, respectively. Although primary structures are highly homologous, the biochemistry of carp deiodinases differs markedly from their mammalian counterparts.  相似文献   

15.
Isolated rat renal tubules prepared by collagenase digestion were used to study the effects of 3,3',5'-tri-iodothyronine ('reverse T3', rT3) and other iodothyronines on the formation of 3,3',5-tri-iodothyronine (T3) from thyroxine (T4). rT3 inhibited the conversion with a dose response over the concentration range 1.5nM-1.5microM. The inhibition was competitive in nature. Both 3,3'-di-iodothyronine and 3',5'-di-iodothyronine also inhibited the production of T3 and T4 in isolated rat renal tubules, but tetraiodothyroacetic acid and 3,5-di-iodothyronine were found to have no effect. These experiments demonstrate in an intact cell system that some naturally occurring iodothyronines have significant effects on T4 deiodination.  相似文献   

16.
To find out whether an inhibitor of extrathyroidal conversion of iodothyronines is present in sera of starved animals, pig liver and kidney homogenates were incubated with T4, T3 or rT3 and dithiotreitol in the presence of evaporated diethyl ether extracts of sera obtained from fed and starved (1-12 days) rabbits. Sera extracts of short-term (1-4 days) starved rabbits caused a significant inhibition of T4 to T3 conversion (54% on day 3) and T4 to rT3 deiodination (52% on day 2) in liver homogenates. Extracts of sera from long-term (8 and 12 days) starved animals diminished only liver T4 to T3 conversion on day 8 and had no influence on liver T4 to rT3 conversion. 5'-deiodination of rT3 (to 3,3'-T2) in liver was gradually decreased by extracts of sera from animals starved during 2-12 days. Liver rT3-5-deiodination (to 3',5'-T2) was significantly impaired on day 4 and totally depressed by long-term starvation. In vitro T3 to 3,3'-T2 conversion in liver was markedly (59-103%) increased by ether extracts of sera from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term nor from long-term fasted rabbits but T4-5-deiodination (to rT3) was reduced by sera extracts of short-term fasted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of thyroxine (T4) on T4 conversion to triiodothyronine (T3) and reverse T3 (rT3) was studied in BB/W rats. A colony of 38 BB/W rats was obtained and half were treated with thyroxine (T4), 1 mg per liter of drinking water. At 106 days of age the following groups were identified: nondiabetic, no T4 treatment, 8 rats; nondiabetic, T4 treated, 8 rats; diabetic, no T4 treatment, 10 rats; diabetic, T4 treated, 7 rats. All animals with diabetes were treated with insulin. T4 conversion to T3 and rT3 was assessed in liver homogenates in 0.1 M Tris-HCl buffer, pH 7.4, with or without 5 mM dithiothreitol (DDT). Serum T4 and rT3 were significantly elevated in both T4-treated groups (P less than 0.001), while serum T3 was not affected in either. Basal T4 deiodination to T3 by the liver homogenate did not change on treatment with T4; the addition of DTT increased T3 production in the homogenate from T4 treated nondiabetic animals (P less than 0.05). In both nondiabetic and insulin-treated diabetic rats there was no effect of T4 on the rate of rT3 production. Since, in the rat, 30-40% of circulating T3 is a direct contribution of thyroid gland secretion, and that would be absent in our T4-suppressed animals, the normal serum T3 may reflect increased absolute peripheral T3 production from the greater concentration of circulating T4.  相似文献   

19.
Using rT3 as substrate, an in vitro 5'D assay was validated for use with liver tissue from adult Japanese quail, by defining conditions under which activity is proportional to enzyme (protein) concentration and is linear with incubation time. Activity was measured as the release of 125I from labeled rT3. Using validated assay conditions we found the following 5'D characteristics: maximal activity from 10 to 50 mM dithiothreitol (cofactor), an apparent Km of 0.52 microM rT3, pH optimum of 7.6-8.5, complete inhibition by 1 mM propylthiouracil and by 1.0 mM iopanoic acid, and substrate "preference" of rT3 greater than T4 greater than T3. Based on these characterizations the quail hepatic 5'D activity is like the Type I 5'D activity found in mammalian liver and kidney and embryonic chicken liver. To determine how previous unvalidated assays, that used high tissue and relatively low substrate (T4) concentrations, influenced 5'D studies we reevaluated 5'D development using an assay validated for each developmental stage with rT3 as substrate. We found extreme quantitative differences in the activities measured and in the proportional relationships between stages, and only limited qualitative similarity in the pattern of 5'D development when unvalidated T4 assay results were compared with validated rT3 assay results. Our data in this paper show good correspondence between whole liver 5'D activity per unit body weight and plasma T3/T4 ratios for the developmental stages sampled.  相似文献   

20.
The metabolism of thyroxine, 3,3′,5-triiodothyronine and 3,3′,5′-triiodothyronine was investigated in rat hepatoma cell cultures (R117-21B). These iodothyronines were labeled with 125I in the phenolic ring and the metabolites were analyzed by ion-exchange column chromatography.When thyroxine was incubated with the cells at 37°C, its glucuronide was the major product and a little increase in 125I? was detected. Although 3,3′,5-triiodothyronine was not observed in the incubation medium, this metabolite was clearly identified in the ethanol extract obtained from the cell homogenates after 24 h incubation.This cell line also metabolized labeled 3,3′,5-triiodothyronine added to culture medium. After 24 h incubation, 3,3′,5-triiodothyronine glucuronide was the major metabolite and iodothyronine sulfates were also formed. The sulfates contained, 3,3′,5-triiodothyronine and 3,3′-diiodothyronine sulfates and an unknown component.In the metabolism of 3,3′,5′-triiodothyronine, the cells were very active in carrying out glucuronidation and phenolic ring deiodination, and this metabolism yielded 3,3′,5′-triiodothyronine and 3,3′-diiodothyronine glucuronides. The iodide fraction contained a small amount of 3,3′-diiodothyronine sulfate.These results show that the R117-21B rat hepatoma cells metabolize the thyroid hormones and their analogs by phenolic and nonphenolic ring deiodinations, by glucuronidation and by sulfation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号