首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2021,120(20):4442-4456
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin’s nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin’s nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.  相似文献   

2.
We elucidated the mechanism by which gelsolin, a Ca2+-dependent regulatory protein from lung macrophages, controls the network structure of actin filaments. In the presence of micromolar Ca2+, gelsolin bound Ca2+. The Ca2+-gelsolin complex reduced the apparent viscosity and flow birefringence of F-actin and the lengths of actin filaments viewed in the electron microscope. However, concentrations of gelsolin causing these alterations did not effect proportionate changes in the turbidity of actin filament solutions or in the quantity of nonsedimentable actin as determined by a radioassay. From these findings, we conclude that gelsolin shortens actin filaments without net depolymerization. Such an effect on the distribution of actin filament lengths led to the prediction that low concentrations of gelsolin would increase the critical concentration of actin-binding protein required for incipient gelation of actin filaments in the presence of Ca2+, providing an efficient mechanism for controlling actin network structure. We verified the prediction experimentally, and we estimated that the Ca2+-gelsolin complex effectively breaks the bond between actin monomers in filaments with a stoichiometry of 1:1. The effect of Ca2+-gelsolin complex on actin solation was rapid, independent of temperature between 0 degrees and 37 degrees C, and reversed by reducing the free Ca2+ concentration.  相似文献   

3.
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments   总被引:2,自引:0,他引:2  
Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.  相似文献   

4.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

5.
Tropomyosin inhibition of the rate of spontaneous polymerization of actin is associated with binding of tropomyosin to actin filaments. Rate constants determined by using a direct electron microscopic assay of elongation showed that alpha alpha- and alpha beta-tropomyosin have a small or no effect on the rate of elongation at either end of the filaments. The most likely explanation for the inhibition of the rate of polymerization of actin in bulk samples is that tropomyosin reduces the number of filament ends by mechanical stabilization of the filaments.  相似文献   

6.
T Keiser  A Schiller  A Wegner 《Biochemistry》1986,25(17):4899-4906
The nonlinear increase of the elongation rate of actin filaments above the critical monomer concentration was investigated by nucleated polymerization of actin. Significant deviations from linearity were observed when actin was polymerized in the presence of magnesium ions. When magnesium ions were replaced by potassium or calcium ions, no deviations from linearity could be detected. The nonlinearity was analyzed by two simple assembly mechanisms. In the first model, if the ATP hydrolysis by polymeric actin is approximately as fast as the incorporation of monomers into filaments, terminal subunits of lengthening filaments are expected to carry to some extent ADP. As ADP-containing subunits dissociate from the ends of actin filaments faster than ATP-containing subunits, the rate of elongation of actin filaments would be nonlinearly correlated with the monomer concentration. In the second model (conformational change model), actin monomers and filament subunits were assumed to occur in two conformations. The association and dissociation rates of actin molecules in the two conformations were thought to be different. The equilibrium distribution between the two conformations was assumed to be different for monomers and filament subunits. The ATP hydrolysis was thought to lag behind polymerization and conformational change. As under the experimental conditions the rate of ATP hydrolysis by polymeric actin was independent of the concentration of filament ends, the observed nonlinear increase of the rate of elongation with the monomer concentration above the critical monomer concentration was unlikely to be caused by ATP hydrolysis at the terminal subunits. The conformational change model turned out to be the simplest assembly mechanism by which all available experimental data could be explained.  相似文献   

7.
Previously we reported the purification from bovine brain of the 90 kD protein-actin complex that shortens actin filaments. In the present work we study the effect of this complex on actin polymerized in the presence of phalloidin (PL) or tropomyosin (TM) which are known to stabilize actin filaments. The effect of the complex has been compared with that of cytochalasin D (CD), a fungal metabolite that also shortens actin filaments. Low shear viscosimetry and electron microscopy showed that PL or TM could not prevent the shortening of actin filaments in the presence of 90 kD protein-actin complex whereas they effectively protected actin filaments from shortening by CD. We conclude that the 90 kD protein-actin complex is a more potent filament-shortening factor than CD.  相似文献   

8.
The rate of capping of actin filaments by the gelsolin-actin complex was measured by inhibition of elongation of the barbed ends of actin filaments. Polymeric actin (0.1-1.0 microM) was added to 0.5 microM monomeric actin and various concentrations of the gelsolin-actin complex (0.08-2.4 nM) to induce nucleated polymerization. As under the experimental conditions (2 mM MgCl2, 100 mM KCl, 37 degrees C, actin monomer concentration less than or equal to 0.5 microM) actin filaments treadmilled, filaments elongated only at the barbed ends and the gelsolin-actin complex did not nucleate actin filaments to polymerize towards the pointed ends. The rate of nucleated actin polymerization in the presence of the gelsolin-actin complex was quantitatively analyzed. The rate constant for capping of the barbed ends of actin filaments by the gelsolin-actin complex was found to be about 10(7) M-1 s-1.  相似文献   

9.
Tropomyosin prevents depolymerization of actin filaments from the pointed end   总被引:13,自引:0,他引:13  
Regulation of the pointed, or slow-growing, end of actin filaments is essential to the regulation of filament length. The purpose of this study is to investigate the role of skeletal muscle tropomyosin (TM) in regulating pointed end assembly and disassembly in vitro. The effects of TM upon assembly and disassembly of actin monomers from the pointed filament end were measured using pyrenyl-actin fluorescence assays in which the barbed ends were capped by villin. Tropomyosin did not affect pointed end elongation; however, filament disassembly from the pointed end stopped in the presence of TM under conditions where control filaments disassembled within minutes. The degree of protection against depolymerization was dependent upon free TM concentration and upon filament length. When filaments were diluted to a subcritical actin concentration in TM, up to 95% of the filamentous actin remained after 24 h and did not depolymerize further. Longer actin filaments (150 monomers average length) were more effectively protected from depolymerization than short filaments (50 monomers average length). Although filaments stopped depolymerizing in the presence of TM, they were not capped as shown by elongation assays. This study demonstrates that a protein, such as TM, which binds to the side of the actin filament can prevent dissociation of monomers from the end without capping the end to elongation. In skeletal muscle, tropomyosin could prevent thin filament disassembly from the pointed end and constitute a mechanism for regulating filament length.  相似文献   

10.
M Str?mqvist 《FEBS letters》1987,213(1):102-106
The effect of brain spectrin (fodrin) on actin has been studied using viscometry and fluorimetry. Brain spectrin resembles erythrocyte spectrin tetramer in its action on actin. Both proteins crosslink actin filaments giving rise to a large increase in the viscosity but fluorimetry shows that neither affects actin polymerization significantly. In addition, brain spectrin as well as erythrocyte spectrin fragments preformed actin filaments. Actin filaments incubated in the presence of either of the two proteins incorporate actin monomers at a much higher rate showing that more filament ends are generated.  相似文献   

11.
James A. Wilkins  Shin Lin 《Cell》1982,28(1):83-90
Immunofluorescence and microinjection experiments have shown that vinculin (molecular weight 130,000) is localized at adhesion plaques of fibroblasts spread on a solid substrate. We found that this protein affects actin filament assembly and interactions in vitro at substoichiometric levels. Vinculin inhibits the rate of actin polymerization under conditions that limit nuclei formation, indicating an effect on the filament elongation step of the reaction. Vinculin also reduces actin filament-filament interaction measured with a low-shear viscometer. Scatchard plot analysis of the binding of 3H-labeled vinculin to actin filaments showed that there is one high-affinity binding site (dissociation constant = 20 nM) for every 1,500–2,000 actin monomers. These results suggest that vinculin interacts with a specific site located at the growing ends of actin filaments in a cytochalasin-like manner, a property consistent with its proposed function as a linkage protein between filaments and the plasma membrane.  相似文献   

12.
Rate of binding of tropomyosin to actin filaments   总被引:1,自引:0,他引:1  
A Wegner  K Ruhnau 《Biochemistry》1988,27(18):6994-7000
The decrease of the rate of actin polymerization by tropomyosin molecules which bind near the ends of actin filaments was analyzed in terms of the rate of binding of tropomyosin to actin filaments. Monomeric actin was polymerized onto actin filaments in the presence of various concentrations of tropomyosin. At high concentrations of monomeric actin (c1) and low tropomyosin concentrations (ct) (c1/ct greater than 10), actin polymerization was not retarded by tropomyosin because actin polymerization was faster than binding of tropomyosin to actin filaments. At low actin concentrations and high tropomyosin concentrations (c1/ct less than 5), the rate of elongation of actin filaments was decreased because actin polymerization was slower than binding of tropomyosin at the ends of actin filaments. The results were quantitatively analyzed by a model in which it was assumed that actin-bound tropomyosin molecules which extend beyond the ends of actin filaments retard association of actin monomers with filament ends. Under the experimental conditions (100 mM KCl, 1 mM MgCl2, pH 7.5, 25 degrees C), the rate constant for binding of tropomyosin to actin filaments turned out to be about 2.5 X 10(6) to 4 X 10(6) M-1 S-1.  相似文献   

13.
Rate of treadmilling of actin filaments in vitro   总被引:2,自引:0,他引:2  
Actin filaments capped at the barbed ends were formed by polymerizing monomeric actin onto a gelsolin-actin complex. The rate of depolymerization and polymerization of the pointed ends was determined by diluting gelsolin-capped actin filaments into various concentrations of monomeric actin. Under the conditions of the experiments (100 mM-KCl, 2 mM-MgCl2 at 37 degrees C) the rate constant of dissociation of subunits both from a shortening and a lengthening filament was found to be 0.21 s-1. As the rate of dissociation of subunits from the slow pointed end determines the rate of treadmilling, it is concluded that actin filaments treadmill with a rate of about 2 micron/h.  相似文献   

14.
Each actin filament has a pointed and a barbed end, however, filament elongation occurs primarily at the barbed end. Capping proteins, by binding to the barbed end, can terminate this elongation. The rate of capping depends on the concentration of capping protein [1], and thus, if capping terminates elongation, the length of filaments should vary inversely with the concentration of capping protein. In cell extracts, such as those derived from neutrophils, new actin filaments can be nucleated by addition of GTPgammaS-activated Cdc42 (a small GTPase of the Rho family). To determine whether elongation of these filaments is terminated by capping, we manipulated the concentration of capping protein, the major calcium-independent capping protein in neutrophils, and observed the effects on filament lengths. Depletion of 70% of the capping protein from extracts increased the mean length of filaments elongated from spectrin-actin seeds (very short actin filaments with free barbed ends) but did not increase the mean length of filaments induced by Cdc42. Furthermore, doubling the concentration of capping protein in cell extracts by adding pure capping protein did not decrease the mean length of filaments induced by Cdc42. These results suggest that the barbed ends of Cdc42-induced filaments are protected from capping by capping protein.  相似文献   

15.
Gelsolin complexes with calcium (gelsolin-Ca2+) binds to the ends of actin filaments to which monomers add preferentially during elongation. It forms a stable complex with actin in a low ionic strength solution which does not normally favor the polymerization of actin. Gelsolin-Ca2+ increases the rate of nucleation of actin which precedes polymerization, but decreases the rate of elongation of the filaments. The final average length of filaments formed in the presence of gelsolin-Ca2+ is shorter and the equilibrium monomer concentration increases relative to actin polymerized in the absence of gelsolin-Ca2+. Gelsolin-Ca2+ also increases the number of actin filaments because the magnitude of the increase in monomer concentration is disproportionately small compared with the reduction in polymer length. In these respects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of actin filaments is the primary mechanism for the dissolution of an actin gel by gelsolin. Therefore, the ability of gelsolin to produce short filaments irrespective of the initial state of assembly of the actin offers flexibility for controlling the network structure of the cytoplasm in which either the monomeric or polymeric form of actin molecules might predominate at different times.  相似文献   

16.
A novel protein factor which reduced the low-shear viscosity of rabbit skeletal muscle actin was purified from a 0.6 M KCl-extract of an insoluble fraction of sea urchin eggs by ammonium sulfate fractionation, gel filtration column chromatography, DNase I column chromatography, and hydroxylapatite column chromatography. This protein factor was shown to be a one-to-one complex of a 20,000-molecular-weight protein and egg actin. This protein complex accelerated the initial rate of actin polymerization, but reduced the steady-state viscosity of F-actin. It inhibited at substoichiometric amounts the elongation of actin filaments on sonicated F-actin fragments and depolymerization of F-actin induced by dilution. In addition, it increased the critical concentration of actin for polymerization. All these effects of this protein complex on actin could be explained by the "capping the barbed end" of the actin filament by the complex. The 20,000-molecular-weight protein which was separated from actin also possessed the barbed end-capping activities, but differed from the complex in that it did not accelerate the polymerization of actin.  相似文献   

17.
E Nishida  S Maekawa  H Sakai 《Biochemistry》1984,23(22):5307-5313
Cofilin, a 21 000 molecular weight protein of porcine brain, reacts stoichiometrically with actin in a 1:1 molar ratio. Upon binding of cofilin, the fluorescence of pyrene-labeled actin under polymerizing conditions is changed into the monomer form, irrespective of whether cofilin is added to actin before or after polymerization. Cofilin decreases the viscosity of actin filaments but increases the light-scattering intensity of the filaments. The centrifugation assay and the DNase I inhibition assay demonstrate that cofilin binds to actin filaments in a 1:1 molar ratio of cofilin to actin monomer in the filament and that cofilin increases the monomeric actin to a limited extent (up to 1.1-1.5 microM monomer) in the presence of physiological concentrations of Mg2+ and KCl. Cofilin is also able to bind to monomeric actin, as demonstrated by gel filtration. Electron microscopy showed that actin filaments are shortened and slightly thickened in the presence of cofilin. No bundle formation was observed in the presence of various concentrations of cofilin. The gel point assay using an actin cross-linking protein and the nucleation assay also suggested that cofilin shortens the actin filaments and hence increases the filament number. Cofilin blocks the binding of tropomyosin to actin filaments. Tropomyosin is dissociated from actin filaments by the binding of cofilin to actin filaments. Cofilin was found to inhibit the superprecipitation of actin-myosin mixtures as well as the actin-activated myosin ATPase. All these results suggest that cofilin is a new type of actin-associated protein.  相似文献   

18.
Cortical actin patches are the most prominent actin structure in budding and fission yeast. Patches assemble, move, and disassemble rapidly. We investigated the mechanisms underlying patch actin assembly and motility by studying actin filament ultrastructure within a patch. Actin patches were partially purified from Saccharomyces cerevisiae and examined by negative-stain electron microscopy (EM). To identify patches in the EM, we correlated fluorescence and EM images of GFP-labeled patches. Patches contained a network of actin filaments with branches characteristic of Arp2/3 complex. An average patch contained 85 filaments. The average filament was only 50-nm (20 actin subunits) long, and the filament to branch ratio was 3:1. Patches lacking Sac6/fimbrin were unstable, and patches lacking capping protein were relatively normal. Our results are consistent with Arp2/3 complex-mediated actin polymerization driving yeast actin patch assembly and motility, as described by a variation of the dendritic nucleation model.  相似文献   

19.
Actin labeling at Cys(374) with tethramethylrhodamine derivatives (TMR-actin) has been widely used for direct observation of the in vitro filaments growth, branching, and treadmilling, as well as for the in vivo visualization of actin cytoskeleton. The advantage of TMR-actin is that it does not lock actin in filaments (as rhodamine-phalloidin does), possibly allowing for its use in investigating the dynamic assembly behavior of actin polymers. Although it is established that TMR-actin alone is polymerization incompetent, the impact of its copolymerization with unlabeled actin on filament structure and dynamics has not been tested yet. In this study, we show that TMR-actin perturbs the filaments structure when copolymerized with unlabeled actin; the resulting filaments are more fragile and shorter than the control filaments. Due to the increased severing of copolymer filaments, TMR-actin accelerates the polymerization of unlabeled actin in solution also at mole ratios lower than those used in most fluorescence microscopy experiments. The destabilizing and severing effect of TMR-actin is countered by filament stabilizing factors, phalloidin, S1, and tropomyosin. These results point to an analogy between the effects of TMR-actin and severing proteins on F-actin, and imply that TMR-actin may be inappropriate for investigations of actin filaments dynamics.  相似文献   

20.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号