首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of recent studies have demonstrated a salt-, nuclease, and detergent-resistant subnuclear structure termed the nuclear protein matrix which consists of a fibrogranular intranuclear network, residual components of the nucleolus, and a peripheral lamina. Other workers, however, have shown that somewhat similar methods result in the isolation of the peripheral lamina devoid of the intranuclear components. In this report we demonstrate that seemingly slight changes in the isolation procedure cause major changes in the morphology of the residual structures obtained. When freshly purified rat liver nuclei were digested with DNase I and RNase A and then extracted with buffers of low magnesium ion concentration (LS buffer) and high ionic strength (HS buffer), the resulting structures isolated prior to or after Triton X-100 extraction lacked the extensive intranuclear network and the easily identifiable residual nucleoli present in the nuclear protein matrix. Systematic modification of this extraction procedure revealed that morphologically identifiable residual nucleoli were present when digestion with RNase A followed extraction with HS buffer but were absent when the order of these steps was reversed. The removal of the nucleolus by RNase A and HS buffer correlated with the removal of nuclear RNA by the same treatments. These coordinate events could not be prevented by treatment with protease inhibitors but were prevented by treatment of the RNase A with diethylpyrocarbonate, an RNase inhibitor. The extensive intranuclear network seen in the nuclear protein matrix was sparse or absent when residual structures were prepared from DNase- and RNase-treated nuclei under conditions which minimized the oxidation of protein sulfhydryl groups. In contrast, an extensive non-chromatin intranuclear network was seen if the formation of intermolecular protein disulfide bonds was promoted by extraction of nuclei with cationic detergents, by overnight incubation, or by treatment with oxidizing agents like sodium tetrathionate prior to nuclease digestion and subsequent extraction. By varying the order of extraction steps and the extent of disulfide cross-linking, it is possible to isolate from a single batch of nuclei residual structures with a wide range of morphologies and compositions.  相似文献   

2.
Histone-depleted nuclei were prepared by high-salt extraction of interphase HeLa cell nuclei. A large amount of the nuclear DNA remained associated with a rapidly sedimenting residual nuclear structure including cytoplasmic (intermediate filament) and nuclear (matrix and lamina) proteins. Electron microscopy allowed detection in the insoluble structure of a residual nuclear envelope, nucleolar residues, and an intranuclear network whose correspondence with components of in situ fixed nuclei is discussed. Using three-dimensional electron microscopy, it is further demonstrated that the salt-insoluble structure remaining after histone depletion in 2 M NaCl is highly ordered. This is of the utmost importance when considering the roles reportedly ascribed to this structure in nuclear functions.  相似文献   

3.
Summary Polyclonal antibodies have been produced which react with a nuclear protein having a molecular weight of 107kD and a pl of 8.7–8.8 (designated p107). This protein is shown to be a component of the residual ribonucleoprotein (RNP) network of the nuclear matrix. P107 localized exclusively to the nuclear interior but not within nucleolar or chromatin domains. We have taken advantage of this unique probe to examine whether the RNP network of the isolated nuclear matrix has a physical counterpart in situ. We show that RNA, p107, divalent cations and the 28 kD Sm antigen of U-snRNPs are components of in situ macromolecular assemblies. While the morphology and intranuclear distribution of these assemblies are insensitive to the removal of chromatin, they are markedly altered by degradation of RNA. Digestion in situ of RNA in the presence of EDTA followed by extraction with high ionic strength buffers solubilized the components of these assemblies. Electron microscopic and immunobiochemical data are presented which support the concept that the residual RNP network of the nuclear matrix is an isolate of a pre-existing structure, and that perturbations in this internal network can be created by RNA degradation, depletion of essential metal ions and proteolysis.Abbreviations CRLM polyclonal chicken antibody raised against rat liver nuclear matrix - Sm monoclonal antibody specific for the 28 kd protein antigen of U1, U2, U4, U5 and U6 snRNPs - hnRNP ribonucleoprotein particles containing hnRNA - snRNP ribonucleoprotein particles containing snRNA - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediaminetetraacetic acid - VRC vanadium ribonucleoside complex - BSA bovine serum albumin - DMSO dimethylsulfoxide - HS high salt buffer - LS low salt buffer  相似文献   

4.
We have devised a method to measure the protein and nucleic acid content of the nuclear matrix using flow cytometry. Nuclear matrices were prepared from nuclei by DNase I digestion followed by 3 M NaCl extraction. The resulting particles were stained with fluorescein isothiocyanate (FITC) for protein and propidium iodide (PI) for double-stranded nucleic acids, and fluorescence as well as forward angle light scatter was detected. The matrices were also subjected to additional chemical or enzymatic perturbations, and changes in the above parameters were measured. Results showed that matrices from heat-shocked cells not only retained the majority of heat-induced excess nuclear protein, but also exhibited higher PI signals than controls after RNase A digestion. This observation did not hold if RNase A digestion preceded high-salt extraction, suggesting that a salt-extractable moiety had been replaced or altered by heat so that double-stranded RNA was protected from the nucleolytic attack. The residual PI fluorescence in matrices from heated cells bore a linear relationship to the increased protein content in those matrices, indicating that the excess protein sequesters matrix-associated RNA. Polyacrylamide gel electrophoresis of matrix polypeptides revealed increased amounts of many proteins as a result of heat as well as the appearance of several new proteins, one of which comigrates with the HSP72/73 heat-shock proteins. The results of these studies show that flow cytometry can be used to study the nuclear matrix and is capable of detecting changes that result from alterations in its protein composition.  相似文献   

5.
A residual protein matrix has been prepared from avian erythroblast nuclei by extensive extraction with salines and detergent and subsequent digestion with high concentrations of RNase and DNase. Ultrastructural examination reveals considerable internal structure, the most prominent feature being the remains of the nucleoli embedded in a network of fibres of fairly uniform diameter of 50 Å. The proteins which make up this structure have been examined by two-dimensional electrophoresis and are shown to consist of a characteristic set of about 30, mainly acidic components, including four prominent species of 43 000, 52 000, 66 000 and 68 000 molecular weight (MW). In parallel preparations of the nuclear matrix digested with DNase alone, much of the nuclear RNA is found associated with the residual structure, including globin-coding sequences. These results correlate well with the ultrastructural appearance of DNase-digested matrix preparations which show that superimposed on the 50 Å fibrous network is a 200–300 Å granular component, the combined fibrillo-granular structure resembling the interchromatin RNP previously identified in situ. However, the proteins of the DNase-digested matrix seen by two-dimensional electrophoresis are indistinguishable from the proteins of matrix preparations digested with both DNase and RNase. Furthermore, two-dimensional comparison between the proteins of the DNase-digested matrix and purified 40S nuclear RNP particles shows that the bulk of the proteins found associated with nuclear RNA in vitro are extracted during matrix preparation, and only two, with MWs of 43 000 and 73 000, remain. The latter species co-migrates with the poly(A)-binding protein.  相似文献   

6.
The behavior of nuclear pre-mRNA-binding proteins after their nuclease and/or salt-induced release from RNA was investigated. After RNase digestion or salt extraction, two proteins that initially exist as tetramers (A2)(3)B1 in isolated heterogeneous nuclear ribonucleoprotein (hnRNP) complexes quantitatively reassociated to form regular helical filaments ranging in length from 100 nm to >10 microm. In highly magnified preparations prepared for scanning transmission electron microscopy, single filaments have diameters near 18 nm. In conventional negatively stained preparations viewed at low magnification, the diameters of the thinnest filaments range from 7 to 10 nm. At protein concentrations of >0.1 mg/ml, the filaments rapidly aggregated to form thicker filamentous networks that look like the fibrogranular structures termed the "nuclear matrix." Like the residual material seen in nuclear matrix preparations, the hnRNP filaments were insoluble in 2 M NaCl. Filament formation is associated with, and may be dependent on, disulfide bridge formation between the hnRNP proteins. The reducing agent 2-mercaptoethanol significantly attenuates filament assembly, and the residual material that forms is ultrastructurally distinct from the 7- to 10-nm fibers. In addition to the protein rearrangement leading to filament formation, nearly one-third of the protein present in chromatin-clarified nuclear extracts was converted to salt-insoluble material within 1 min of digestion with RNase. These observations are consistent with the possibility that the residual material termed the nuclear matrix may be enriched in, if not formed by, denatured proteins that function in pre-mRNA packaging, processing, and transport.  相似文献   

7.
The nuclear matrix contains a group of residual non-histone proteins which remain structurally organized after extensive extraction of isolated nuclei with a high salt buffer, nucleases and a non-ionic detergent. Electron microscopic examination shows that the nuclear matrix is composed of a pore-complex lamina, an intranuclear network and residual nucleoli. In CHO cells biochemical analyses performed by one-dimensional SDS-PAGE show three major nuclear matrix polypeptides with molecular weights between 60 and 70 kDa. Polyclonal antibodies produced against these polypeptides were used to determine their nuclear distribution. Using immunoblotting, these proteins were found in whole nuclei, nuclear matrix, and in the intranuclear network but not in the pore-complex lamina. In order to determine the relationship between these structural proteins and the organization of the nucleus, the proteins were localized in situ. Ultrastructural detection was carried out by immunogold staining of thin sections of Lowicryl K4M-embedded cells. In interphase nuclei all condensed chromatin clumps were labelled. The nucleolus and the interchromatin granules were never immunogold-stained. During mitosis, the label was found to be associated with the chromosomes. This study shows that unlike the lamins, these 60-70 kDa nuclear matrix proteins are associated with the condensed chromatin throughout the cell cycle.  相似文献   

8.
The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the concept that NuMA and topoisomerase IIalpha may act as structural components of the nuclear matrix.  相似文献   

9.
10.
The intranuclear localization of SV40 T-antigen (T-Ag) and the cellular protein p53 was studied in SV40 abortively infected baby mouse kidney cells using two complementary methods of ultrastructural immunocytochemistry in combination with preferential staining of nuclear RNP components and electron microscope autoradiography. Both proteins were revealed in association with peri- and interchromatin RNP fibrils containing the newly synthesized hnRNA. In addition, T-Ag and p53 remained bound, at least in part, to the residual internal nuclear matrix following nuclease and salt extractions of infected cells. The localization of T-Ag was different in SV40 lytically infected monkey kidney cells since, in addition to hnRNP fibrils, the viral protein was also associated with cellular chromatin. However, when lytic infection was performed in conditions of blocked viral DNA replication, T-Ag was no longer associated with the cellular chromatin but remained bound to the hnRNP fibrils. We conclude that the transforming and lytic functions of T-Ag can be distinguished by different subnuclear distributions. The significance of the association of T-Ag and p53 with hnRNP fibrils and the internal nuclear matrix is discussed in relation to the role of these structures in the control of cellular mRNA biogenesis.  相似文献   

11.
12.
A possible skeletal substructure of the macronucleus of Tetrahymena   总被引:1,自引:1,他引:0       下载免费PDF全文
Upon removal of chromatin from isolated macronuclei of tetrahymena, residual structures are obtained, the organization of which faithfully reflects the distinctive architecture of the macronucleus. Macronuclei are isolated by a new procedure in which cells are lysed by immersion in citric acid and Triton X-100. This method is rapid and efficient and leaves the nuclear structures stripped of nuclear envelope and nucleoli. The remaining interconnected chromatin bodies are structurally differentiated into a dense outer shell and a fibrillar inner core. The fibrillar component is identified as chromatin because it is removed upon digestion with DNase and extraction with 2 M NaCl. The dense shell of the chromatin body is unaffected by the digestion procedure, which leaves a skeletal structure comprised of hollow spherical bodies. Analysis of the protein composition by SDS acrylamide gel electrophoresis before and after digestion with DNase and RNase and high-salt extraction shows that histones are diminished, whereas the nonhistone protein composition remains unchanged. It was found the DNase not only extracts chromatin but also protects the nonchromatin structure from the otherwise disruptive effects of high-salt extraction. The method used for isolating the nuclei also affects the structure remaining after the digestion procedure the citric acid/Triton X-100 method enhances the stability of the interconnected spherical bodies. The results indicate that the method for isolating nuclei and the procedure by which chromatin is extracted are both major factors contributing to the detection of a possible nonchromatin nuclear skeleton.  相似文献   

13.
The structural organization of the nuclear matrix of pericentromeric heterochromatin blocks (chromocenters) was examined in cultured murine fibroblasts. After 2 M NaCl extraction without DNase I treatment, chromocenters became extremely swollen and could not be recognized with conventional electron microscopy. Using immunogolding with anti-topoisomerase IIα antibodies, we demonstrated that residual chromocenters were divided into numerous discrete aggregates. After 2 M NaCl extraction with DNase I treatment, the residual chromocenters looked as the dense meshwork of thin fibers and, therefore, were easily distinguished from the rest of nuclear matrix. Extraction with dextran sulfate and heparin resulted in chromocenter decondensation. Chromatin complexes with rosette organization (central core from which numerous DNA fibers radiated) were seen. Most likely, the appearance of these rosettes was a consequence of incomplete chromatin extraction. Thus, the nuclear matrix of pericentromeric chromosome regions in cultured murine fibroblasts is morphologically distinguished from the rest of the nuclear matrix.  相似文献   

14.
Nuclei fromZea mays L. root tip meristematic cells were treated according to the conventional method for nuclear matrix isolation and according to a recently adapted procedure for isolation of nuclear shells from plant cells. In the first case, after high salt extraction of proteins and DNase I and RNase digestions, residual structures are obtained consisting of a periferal layer and an internal network. The obtained structures are very similar to the nuclear matrix preparations from animal cells. In case nuclei are swollen in EDTA first, digested with DNase II and RNase prior high salt treatment, structures devoid of internal network are obtained. The analogous residual structures were shown forPhaseolus vulgaris L. meristematic root cells nuclei (Galcheva-Gargovaet al. 1988). The morphology and the protein composition of the two types of residual structures suggest that the organization of scaffold structures from plant nuclei is very similar to the one from animal cell nuclei.  相似文献   

15.
16.
When the nucleus is stripped of most DNA, RNA, and soluble proteins, a structure remains that has been referred to as the nuclear matrix, which acts as a framework to determine the higher order of chromatin organization. However, there is always uncertainty as to whether or not the nuclear matrix, isolated in vitro, could really represent a skeleton of the nucleus in vivo. In fact, the only nuclear framework of which the existence is universally accepted is the nuclear lamina, a continuous thin layer that underlies the inner nuclear membrane and is mainly composed of three related proteins: lamins A, B, and C. Nevertheless, a number of recent investigations performed on different cell types have suggested that nuclear lamins are also present within the nucleoplasm and could be important constituents of the nuclear matrix. In most cell types investigated, the nuclear matrix does not spontaneously resist the extraction steps, but must rather be stabilized before the application of extracting agents. In this investigation, by immunochemical and morphological analysis, we studied the effect of stabilization with different divalent cations (Zn(2+), Cu(2+), Cd(2+)) on the distribution of lamin A and B1 in the nuclear matrix obtained from K562 human erythroleukemia cells. In intact cells, antibodies to both lamin A and B1 mainly stained the nuclear periphery, although some immunoreactivity was detected in the nuclear interior. The fluorescent lamin A pattern detected in Cu(2+)- and Cd(2+)-stabilized nuclei was markedly modified, whereas Zn(2+)-incubated nuclei showed an unaltered pattern of lamin A distribution. By contrast, the distribution of lamin B1 in isolated nuclei was not modified by the stabilizing cations. When chromatin was removed by nuclease digestion and extraction with solutions of high ionic strength, a previously masked immunoreactivity for lamin A, but not for lamin B1, became evident in the internal part of the residual structures representing the nuclear matrix. Our results indicate that when metal ions are used as stabilizing agents for the recovery of the nuclear matrix, the distribution of both lamin A and lamin B1 in the final structures, corresponds to the pattern we have very recently reported using different extraction procedures. This observation strengthen the concept that intranuclear lamins may act as structural components of the nuclear matrix.  相似文献   

17.
The method of chromatin photo-stabilization by the action of visible light in the presence of ethidium bromide was used for investigation of higher-level chromatin structures in isolated nuclei. As a model we used rat hepatocyte nuclei isolated in buffers which stabilized or destabilized nuclear matrix. Several higher-level chromatin structures were visualized: 100nm globules-chromomeres, chains of chromomeres-chromonemata, aggregates of chromomeres-blocks of condensed chromatin. All these structures were completely destroyed by 2M NaCl extraction independent of the matrix state, and DNA was extruded from the residual nuclei (nuclear matrices) into a halo. These results show that nuclear matrix proteins do not play the main role in the maintenance of higher-level chromatin structures. Preliminary irradiation led to the reduction of the halo width in the dose-dependent manner. In regions of condensed chromatin of irradiated nucleoids there were discrete complexes consisting of DNA fibers radiating from an electron-dense core and resembling the decondensed chromomeres or the rosette-like structures. As shown by the analysis of proteins bound to irradiated nuclei upon high-salt extraction, irradiation presumably stabilized the non-histone proteins. These results suggest that in interphase nuclei loop domains are folded into discrete higher-level chromatin complexes (chromomeres). These complexes are possibly maintained by putative non-histone proteins, which are extracted with high-salt buffers from non-irradiated nuclei.  相似文献   

18.
The adult chicken erythrocyte nucleus was found to lack an internal nuclear matrix: even milder extraction procedures resulted in the production of empty shells of pore complex-lamina together with loose aggregates of core histone. In contrast, rat liver nuclei showed a typical intranuclear salt-resistant skeleton. These results show that an internal matrix is not an obligatory nuclear component, and is not required for the spatial organization of chromatin. 5-day-old embryonic erythrocytes did, however, contain an interchromatinic nuclear matrix, suggesting a correlation between the presence of matrix structures, and nuclear 'activity'.  相似文献   

19.
When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.  相似文献   

20.
Numerous membrane‐less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super‐enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane‐less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号