首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 107 CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log10 CFU/g was observed, with a maximum decrease of 1.8 log10 CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 108 CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

2.
AIMS: To assess a collection of 96 Escherichia coli O157:H7 strains for their resistance potential against a set of colicinogenic E. coli developed as a probiotic for use in cattle. METHODS AND RESULTS: Escherichia coli O157:H7 strains were screened for colicin production, types of colicins produced, presence of colicin resistance and potential for resistance development. Thirteen of 14 previously characterized colicinogenic E. coli strains were able to inhibit 74 serotype O157:H7 strains. Thirteen E. coli O157:H7 strains were found to be colicinogenic and 11 had colicin D genes. PCR products for colicins B, E-type, Ia/Ib and M were also detected. During in vitro experiments, the ability to develop colicin resistance against single-colicin producing E. coli strains was observed, but rarely against multiple-colicinogenic strains. The ability of serotype O157:H7 strains to acquire colicin plasmids or resistance was not observed during a cattle experiment. CONCLUSIONS: Escherichia coli O157:H7 has the potential to develop single-colicin resistance, but simultaneous resistance against multiple colicins appears to be unlikely. Colicin D is the predominant colicin produced by colicinogenic E. coli O157:H7 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for resistance development against colicin-based strategies for E. coli O157:H7 control may be very limited if more than one colicin type is used.  相似文献   

3.
Experimental Escherichia coli O157:H7 carriage in calves.   总被引:5,自引:0,他引:5       下载免费PDF全文
Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding.  相似文献   

4.
A study of Escherichia coli O157:H7 transmission and shedding was conducted with bull calves housed in individual pens within a confined environment. For comparative purposes, the numbers and duration of E. coli O157:H7 shedding in naturally infected calves were monitored after a single purchased calf (calf 156) tested positive prior to inoculation. During the next 8 days, the calves in adjacent pens and a pen directly across a walkway from calf 156 began to shed this serotype O157:H7 strain. Five of the eight calves in this room shed this O157:H7 strain at some time during the following 8 weeks. The numbers of E. coli O157:H7 isolates shed in these calves varied from 60 to 10(5) CFU/g of feces, and the duration of shedding ranged from 17 to >31 days. The genomic DNAs from isolates recovered from these calves were indistinguishable when compared by using XbaI digestion and pulsed-field gel electrophoresis. Inoculation of calves with 1 liter of water containing ca. 10(3) to 10(4) CFU of E. coli O157:H7/ml resulted in shedding in 10 of 12 calves (trial 1, 4 of 4 calves; trial 2, 6 of 8 calves). The inoculated calves shed the inoculation strain (FRIK 1275) as early as 24 h after administration. The duration of shedding varied from 18 to >43 days at levels from 10(2) to 10(6) CFU/g of feces. The numbers of doses necessary to initiate shedding varied among calves, and two calves in trial 2 never shed FRIK 1275 after four doses (ca. 10(6) CFU per dose). Results from this study confirm previous reports of animal-to-animal and waterborne dissemination of E. coli O157:H7 and highlight the need for an effective water treatment to reduce the spread of this pathogen in cattle.  相似文献   

5.
W C Cray  Jr  H W Moon 《Applied microbiology》1995,61(4):1586-1590
Preweaned calves and adult cattle were inoculated with 10(10) CFU of Escherichia coli O157:H7 strain 3081, a calf isolate which produces Shiga-like toxin, to define the magnitude and duration of fecal shedding of E. coli O157:H7 for each age group. Fecal samples of eight of eight, eight of eight, three of eight, and two of eight calves were positive at 2, 7, 14, and 20 weeks, respectively. In contrast, nine of nine, two of nine, and one of nine steers were positive at 2, 7, and 14 weeks, respectively. The magnitude of shedding (CFU per gram) by individual animals at any one time postinoculation varied widely within each age group but was greater for calves as a group. The differences in shedding patterns between adults and calves were statistically significant. After inoculation, 25 of 29 animals remained healthy and 4 of 17 calves had transient diarrhea. Histologic sections of the brain, kidney, jejunum, ileum, cecum, and colon taken at necropsy from nine calves either 3, 14, or 18 days postinoculation or three adults either 2, 3, or 4 days postinoculation were normal. E. coli O157:H7 was recovered from the alimentary tracts of all of the animals necropsied, and there was no evidence of spread to the liver, spleen, or kidneys. Four calves that had ceased shedding were reinfected when inoculated again with the same strain. E. coli O157:H7 was recovered from none of five and two of five adults inoculated with 10(4) and 10(7) CFU, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
AIMS: To determine if exogenous melatonin (MEL) influences growth of Escherichia coli O157:H7 in pure culture and if MEL affects faecal shedding patterns of E. coli O157:H7 or total leucocyte counts in sheep. METHODS AND RESULTS: Two strains of E. coli O157:H7 were cultured in the presence of varying concentrations of MEL. Maximal specific growth rates of E.coli O157:H7 strains were not affected by MEL addition in pure culture. Wethers (n = 16) received either 0 (CONT) or 25 mg MEL hd(-1) day(-1) for 21 days. Daily shedding patterns of E. coli O157:H7 were not different (P > 0.10) between groups with faecal populations of E. coli O157:H7 decreasing daily (P < 0.01) in both groups. However, shedding tended to differ between the control and treated group by the end of the experiment. Total WBC and differential leucocyte counts were not affected by treatment. CONCLUSIONS: Melatonin had no affect on specific growth rates in pure culture nor did the administration of exogenous MEL alter bacterial shedding patterns or immune response indicators in experimentally infected wethers exposed to a long photoperiod. SIGNIFICANCE AND IMPACT OF THE STUDY: Although MEL did not affect shedding patterns or gastrointestinal populations of E. coli O157:H7, the tendency for MEL-treated sheep to shed less E. coli O157:H7 towards the end of the experiment warrants further research. Providing MEL for a longer period of time, or at greater concentrations, may elucidate a potential role that MEL plays in the seasonal shedding patterns of E. coli O157:H7 in livestock.  相似文献   

7.
AIMS: This study was conducted to evaluate the effect of supplementing barley- or corn-based diets with canola oil on faecal shedding of Escherichia coli O157:H7 by experimentally inoculated feedlot cattle. METHODS AND RESULTS: Four groups of yearling steers fed on barley- or corn-based feedlot diets containing 0% (BA; CO) or 6% canola oil (BA-O; CO-O) were inoculated with 10(10) CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7. The inoculated strains were tracked in oral (mouth swab) and environmental (water, water bowl interface, feed, faecal pat) samples by enrichment and immunomagnetic separation (IMS) for 12 weeks, and in rectally collected faecal samples for 23 weeks (enumeration by dilution plating for 12 weeks; detection by IMS for a further 11 weeks). Levels of E. coli O157:H7 shed in faecal samples over the course of the enumeration period were similar (P = 0.14) among treatments. Disappearance of the inoculated strains from faeces was more rapid (P = 0.009) with barley than with corn, but shedding levels at the end of the enumeration period were similar (P = 0.21) across grain types. Canola oil supplementation did not affect (P = 0.71) the rate of disappearance of E. coli O157:H7 from faeces. The numbers of steers culture positive for E. coli O157:H7 during the enumeration period were similar (P = 0.57) among treatments. During the 11-week detection period, however, more (P < 0.001) steers were E. coli O157:H7-positive in the BA group (15/64) than in BA-O (two of 64), CO (two of 56), or CO-O (one of 56). The organism was present in two of 48 water samples (both CO-O), one of 48 water bowl swabs (BA-O), four of 48 feed samples (two of 12 BA; two of 12 CO-O), 30 of 48 pen floor faecal pat samples, and 296 of 540 mouth swabs (81/144 BA, 80/144 BA-O, 74/126 CO and 61/126 CO-O). CONCLUSION: Supplementing corn or barley-based diets with canola oil did not affect shedding of E. coli O157:H7 by feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY: High-shedding individuals (i.e. 'super shedders') may be responsible for disseminating E. coli O157:H7 among penmates. Faeces on pen floors appears to be a more significant source of infection than are feed or drinking water.  相似文献   

8.
A study of Escherichia coli O157:H7 transmission and shedding was conducted with bull calves housed in individual pens within a confined environment. For comparative purposes, the numbers and duration of E. coli O157:H7 shedding in naturally infected calves were monitored after a single purchased calf (calf 156) tested positive prior to inoculation. During the next 8 days, the calves in adjacent pens and a pen directly across a walkway from calf 156 began to shed this serotype O157:H7 strain. Five of the eight calves in this room shed this O157:H7 strain at some time during the following 8 weeks. The numbers of E. coli O157:H7 isolates shed in these calves varied from 60 to 105 CFU/g of feces, and the duration of shedding ranged from 17 to >31 days. The genomic DNAs from isolates recovered from these calves were indistinguishable when compared by using XbaI digestion and pulsed-field gel electrophoresis. Inoculation of calves with 1 liter of water containing ca. 103 to 104 CFU of E. coli O157:H7/ml resulted in shedding in 10 of 12 calves (trial 1, 4 of 4 calves; trial 2, 6 of 8 calves). The inoculated calves shed the inoculation strain (FRIK 1275) as early as 24 h after administration. The duration of shedding varied from 18 to >43 days at levels from 102 to 106 CFU/g of feces. The numbers of doses necessary to initiate shedding varied among calves, and two calves in trial 2 never shed FRIK 1275 after four doses (ca. 106 CFU per dose). Results from this study confirm previous reports of animal-to-animal and waterborne dissemination of E. coli O157:H7 and highlight the need for an effective water treatment to reduce the spread of this pathogen in cattle.  相似文献   

9.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator sigma(S) and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 10(1) to 10(4) CFU, we found the wild-type strain in feces of mice given lower doses (10(2) versus 10(3) CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 10(4) CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P 相似文献   

10.
The purpose of this study was to develop a sheep model to investigate reproduction, transmission, and shedding of Escherichia coli O157:H7 in ruminants. In addition, we investigated the effect of diet change on these parameters. Six groups of twin lambs given oral inoculations of 10(5) or 10(9) CFU of E. coli O157:H7 and their nondosed mothers were monitored for colonization by culture of fecal samples. A modified selective-enrichment protocol that detected E. coli O157:H7 at levels as low as 0.06 CFU per g of ovine feces was developed. Horizontal transmission of infection occurred between the lambs and most of the nondosed mothers. When animals were kept in confinement and given alfalfa pellet feed, lambs receiving the higher dose shed the bacteria sooner and longer than all other animals. However, when the animals were released onto a sagebrush-bunchgrass range, every animal, regardless of its previous status (dosed at one of the inoculum levels tested or nondosed) shed E. coli O157:H7 uniformly. Shedding persisted for 15 days, after which all animals tested negative. E. coli O157:H7 reproduction and transmission and the combined effect of diet change and feed withholding were also investigated in a pilot study with experimentally inoculated rams. Withholding feed induced animals to shed the bacteria either by triggering growth of E. coli O157:H7 present in the intestines or by increasing susceptibility to infection. Introduction of a dietary change with brief starvation caused uniform shedding and clearance of E. coli O157:H7, and all animals then tested negative for the bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two groups of calves were subjected to dietary stress by withholding of food beginning 1 or 14 days after inoculation with 1010 CFU of Escherichia coli O157:H7. Following treatment, neither group had a significant increase in fecal shedding of E. coli O157:H7. A third group of calves had food withheld for 48 h prior to inoculation with 107 CFU of E. coli O157:H7. These calves were more susceptible to infection and shed significantly more E. coli O157:H7 organisms than calves maintained on a normal diet.  相似文献   

12.
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant human pathogen that resides in healthy cattle. It is thought that a reduction in the prevalence and numbers of EHEC in cattle will reduce the load of EHEC entering the food chain. To this end, an intervention strategy involving the addition of chitosan microparticles (CM) to feed in order to reduce the carriage of this pathogen in cattle was evaluated. Experiments with individual Holstein calves and a crossover study found that the addition of CM to feed decreased E. coli O157:H7 shedding. In the crossover study, CM resulted in statistically significant reductions in the numbers recovered from rectal swab samples (P < 0.05) and the duration of shedding (P < 0.05). The effects of feeding CM to calves differed, indicating that the optimal levels of CM may differ between animals or that other factors are involved in the interaction between CM and E. coli O157:H7. In vitro studies demonstrated that E. coli O157:H7 binds to CM, suggesting that the reduction in shedding may result at least in part from the binding of positively charged CM to negatively charged E. coli cells. Additional studies are needed to determine the impact of CM feeding on animal production, but the results from this study indicate that supplementing feed with CM reduces the shedding of E. coli O157:H7 in cattle.  相似文献   

13.
A 14-month longitudinal study was conducted on four dairy farms (C, H, R, and X) in Wisconsin to ascertain the source(s) and dissemination of Escherichia coli O157:H7. A cohort of 15 heifer calves from each farm were sampled weekly by digital rectal retrieval from birth to a minimum of 7 months of age (range, 7 to 13 months). Over the 14 months of the study, the cohort heifers and other randomly selected cattle from farms C and H tested negative. Farm R had two separate periods of E. coli O157:H7 shedding lasting 4 months (November 1995 to February 1996) and 1 month (July to August 1996), while farm X had at least one positive cohort animal for a 5-month period (May to October 1996). Heifers shed O157:H7 strains in feces for 1 to 16 weeks at levels ranging from 2.0 × 102 to 8.7 × 104 CFU per g. E. coli O157:H7 was also isolated from other noncohort cattle, feed, flies, a pigeon, and water associated with the cohort heifers on farms R and/or X. When present in animal drinking water, E. coli O157:H7 disseminated through the cohort cattle and other cattle that used the water source. E. coli O157:H7 was found in water at <1 to 23 CFU/ml. Genomic subtyping by pulsed-field gel electrophoresis demonstrated that a single O157:H7 strain comprised a majority of the isolates from cohort and noncohort cattle, water, and other positive samples (i.e., from feed, flies, and a pigeon, etc.) on a farm. The isolates from farm R displayed two predominant XbaI restriction endonuclease digestion profiles (REDP), REDP 3 and REDP 7, during the first and second periods of shedding, respectively. Six additional REDP that were ≥89% similar to REDP 3 or REDP 7 were identified among the farm R isolates. Additionally, the REDP of an O157:H7 isolate from a heifer on farm R in 1994 was indistinguishable from REDP 3. Farm X had one O157:H7 strain that predominated (96% of positive samples had strains with REDP 9), and the REDP of an isolate from a heifer in 1994 was indistinguishable from REDP 9. These results suggest that E. coli O157:H7 is disseminated from a common source on farms and that strains can persist in a herd for a 2-year period.  相似文献   

14.
AIMS: To determine if thyroid function affects faecal shedding of Escherichia coli O157:H7. METHODS AND RESULTS: Eight yearling cattle (n = 4 per treatment group), previously identified as shedding E. coli O157:H7, received either 0 or 10 mg 6-N-propyl-2-thiouracil (PTU) kg(-1) BW day(-1) for 14 days to reduce serum concentrations of the thyroid hormones, T(3) and T(4). Animals were monitored daily for changes in faecal shedding of E. coli O157:H7 and E. coli (EC) for the 14-day treatment period and an additional 7 days post-treatment. Body weight was measured weekly and serum concentrations of T(3) and T(4) were determined every 3 days. No differences in faecal shedding of E. coli O157:H7 were observed during the 14-day treatment period. However, compared with control animals, a greater percentage of PTU-treated cattle ejected E. coli O157:H7 on day 16 (100 vs 25%) and 18 (75 vs 0%) of the post-treatment period. Serum T(3) was lower in PTU-treated cattle during the 14-day treatment period and greater on day 18 of the post-treatment period. CONCLUSION: Cattle with chemically altered thyroid hormones had similar shedding patterns of faecal E. coli O157:H7 and EC during the 14-day treatment period. However, faecal shedding of E. coli O157:H7 tended to be greater, and serum concentrations of T(3), were greater for PTU-treated cattle immediately following the termination of PTU treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Short-term chemical inhibition of thyroid hormones had minimal effects on faecal shedding of E. coli O157:H7 in naturally infected cattle. However, a hyperthyroid state as observed postdosing might play a role in the seasonal shedding of E. coli O157:H7 in cattle.  相似文献   

15.
The ecology of Escherichia coli O157:H7 is not well understood. The aims of this study were to determine the prevalence of and characterize E. coli O157:H7 associated with houseflies (HF). Musca domestica L. HF (n = 3,440) were collected from two sites on a cattle farm over a 4-month period and processed individually for E. coli O157:H7 isolation and quantification. The prevalence of E. coli O157:H7 was 2.9 and 1.4% in HF collected from feed bunks and a cattle feed storage shed, respectively. E. coli O157:H7 counts ranged from 3.0 x 10(1) to 1.5 x 10(5) CFU among the positive HF. PCR analysis of the E. coli O157:H7 isolates revealed that 90.4, 99.2, 99.2, and 100% of them (n = 125) possessed the stx1, stx2, eaeA, and fliC genes, respectively. Large populations of HF on cattle farms may play a role in the dissemination of E. coli O157:H7 among animals and to the surrounding environment.  相似文献   

16.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.  相似文献   

18.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 10(8) CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

19.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. In this paper, we described the development of a real-time PCR assay to detect the presence of Escherichia coli O157:H7 using these fluorogenic reporter molecules. MBs were designed to recognize a 26-bp region of the rfbE gene, coding for an enzyme necessary for O-antigen biosynthesis. The specificity of the MB-based PCR assay was evaluated using various enterohemorrhagic (EHEC) and Shiga-like toxin-producing (STEC) E. coli strains as well as bacteria species that cross-react with the O157 antisera. All E. coli serotype O157 tested was positively identified while all other species, including the closely related O55 were not detected by the assay. Positive detection of E. coli O157:H7 was demonstrated when >10(2) CFU/ml was present in the samples. The capability of the assay to detect E. coli O157:H7 in raw milk and apple juice was demonstrated. As few as 1 CFU/ml was detected after 6 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli O157:H7 in food and environmental samples.  相似文献   

20.
Twenty-four Escherichia coli strains producing standard colicins were evaluated for inhibitory activity against 27 diarrheagenic E. coli strains of serotypes O15:H-, O26:(H11, H-), and O111:(H8, H11, H-), including O157:H7, representing diarrheagenic E. coli clones, 3, 4, 8, 9, and 10. Overlay techniques were used to assess inhibition on Luria agar and Luria agar supplemented with 0.25 micrograms of mitomycin C per ml to induce colicin production. As a group, the A colicins (Col) E1 to E8, K, and N inhibited 23 to 25 (85.2 to 92.6%) of the 27 diarrheagenic strains on mitomycin C-containing agar, whereas the most active group B colicins, Col D and Ia, inhibited 9 and 12 (33.3 and 44.4%), of the diarrheagenic strains, respectively. Col G and H and Mcc B17 inhibited 22 to 27 (81.5 to 100%) of the diarrheagenic strains on Luria agar but were suppressed on mitomycin C-containing agar medium. All O157:H7 strains evaluated were sensitive to Col E1 to E8, K, and N on mitomycin C-containing agar and to Col G and H and Mcc B17 on Luria agar. Sensitivity to colicins of the selected set of diarrheagenic strains was in the order diarrheagenic E. coli clone 9 > 4 > 3 > 10 > 8 and was not restricted to strains of a single clone or serotype. Strain 8C from clone 8 was resistant to most test colicins. There is potential for using colicins in foods and agriculture to inhibit sensitive diarrheagenic E. coli strains, including serotype O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号