首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of cyclin-dependent kinases (cdks) depends on the phosphorylation of a residue corresponding to threonine 161 in human p34cdc2. One enzyme responsible for phosphorylating this critical residue has recently been purified from Xenopus and starfish. It was termed CAK (for cdk-activating kinase), and it was shown to contain p40MO15 as its catalytic subunit. In view of the cardinal role of cdks in cell cycle control, it is important to learn if and how CAK activity is regulated during the somatic cell cycle. Here, we report a molecular characterization of a human p40MO15 homologue and its associated CAK activity. We have cloned and sequenced a cDNA coding for human p40MO15, and raised specific polyclonal and monoclonal antibodies against the corresponding protein expressed in Escherichia coli. These tools were then used to demonstrate that p40MO15 protein expression and CAK activity are constant throughout the somatic cell cycle. Gel filtration suggests that active CAK is a multiprotein complex, and immunoprecipitation experiments identify two polypeptides of 34 and 32 kD as likely complex partners of p40MO15. The association of the three proteins is near stoichiometric and invariant throughout the cell cycle. Immunocytochemistry and biochemical enucleation experiments both demonstrate that p40MO15 is nuclear at all stages of the cell cycle (except for mitosis, when the protein redistributes throughout the cell), although the p34cdc2/cyclin B complex, one of the major purported substrates of CAK, occurs in the cytoplasm until shortly before mitosis. The absence of obvious changes in CAK activity in exponentially growing cells constitutes a surprise. It suggests that the phosphorylation state of threonine 161 in p34cdc2 (and the corresponding residue in other cdks) may be regulated primarily by the availability of the cdk/cyclin substrates, and by phosphatase(s).  相似文献   

2.
3.
Although all three D cyclins bind and activate cdks 2, 4 and 6, Fbxo7 has been characterised as a selective enhancer of cdk6 activity. It increases activation by directly facilitating cdk6 interaction with viral and cellular D cyclins. Fbxo7 over-expression has transforming activity in murine fibroblasts and is also highly expressed in human cancer, suggesting it is a potential oncogene. Fbxo7 has the ability to activate cell cycle regulators, and is part of an E3 ubiquitin ligase. We postulate Fbxo7 coordinates the ubiquitination of other substrates with cell cycle entry. It may therefore represent a means to integrate cell signals and control disparate biological processes during the early part of the cell cycle.  相似文献   

4.
Uterine decidualization, characterized by stromal cell proliferation, and differentiation into specialized type of cells (decidual cells) with polyploidy, during implantation is critical to the pregnancy establishment in mice. The mechanisms by which the cell cycle events govern these processes are poorly understood. The cell cycle is tightly regulated at two particular checkpoints, G1-S and G2-M phases. Normal operation of these phases involves a complex interplay of cyclins, cyclin-dependent kinases (cdks) and cdk inhibitors (CKIs). We previously observed that upregulation of uterine cyclin D3 at the implantation site is tightly associated with decidualization in mice. To better understand the role of cyclin D3 in this process, we examined cell-specific expression and associated interactions of several cell cycle regulators (cyclins, cdks and CKIs) specific to different phases of the cell cycle during decidualization in mice. Among the various cell cycle molecules examined, coordinate expression and functional association of cyclin D3 with cdk4 suggest a role for proliferation and, that of cyclin D3 with p21 and cdk6 is consistent with the development of polyploidy during stromal cell decidualization.  相似文献   

5.
6.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

7.
Targeting cell cycle and apoptosis for the treatment of human malignancies   总被引:4,自引:0,他引:4  
Oncogenic transformation leads to cell cycle aberration and apoptosis dysregulation. Targeting cell cycle and apoptosis pathways has emerged as an attractive approach for the treatment of cancer. The activity of cdks can be modulated by targeting these kinases with small molecules that bind to the ATP binding pocket of cdks, or by altering the composition of the cdk/endogenous cdk inhibitor complexes by different mechanisms. Apoptosis can be modulated by targeting pro-apoptotic or pro-survival pathways. Several proteins relevant to oncogenic and proliferative processes, such as p53, bcl-2, AKT, ras and epidermal growth factor receptor, are also important in blocking apoptosis. Several small molecules that modulate cell cycle control and apoptosis have been approved recently and many will be approved in the near future. Several challenges remain, including finding ways of targeting these agents specifically to tumors (sparing normal cells), and the development of rationales for combining these new agents with standard therapies and for prioritizing the development of an overwhelming number of novel small molecules targeting cell cycle and apoptosis. Novel technologies such as genomics and proteomics will be instrumental in designing combinatorial regimens tailored to patients on the basis of the genetic makeup of tumors. Irrespective of all shortcomings, the future of modulation of apoptosis and cell cycle machinery for oncology therapy is quite exciting.  相似文献   

8.
The substrates of the cdc2 kinase.   总被引:17,自引:0,他引:17  
The eukaryotic cell cycle is characterized by two major events, DNA replication (S phase) and mitosis (M phase). According to the current paradigm of the cell cycle as a cdc2 cycle, both of these events are driven by serine-threonine specific protein kinases encoded by functional homologs of the fission yeast cdc2 gene. To understand how cdc2 kinases function, it is necessary to identify their physiological substrates and to determine how phosphorylation of these substrates promotes cell cycle progression. Definitive information about substrates relevant to early stages of the cell cycle (G1 and S phases) remains scarce, but several likely physiological targets of the mitotic cdc2 kinase have recently been identified. Current evidence indicates that cdc2 kinase may trigger entry of cells into mitosis not only by initiating important regulatory pathways but also by direct phosphorylation of abundant structural proteins.  相似文献   

9.
Many mechanisms either activate or inhibit the cdks and thereby either promote or arrest progression through the mitotic cell cycle. Since the signal transduction pathways emanating from extracellular mitogens and the agents controlling these pathways are complicated there may yet be novel mechanisms of cell cycle regulation remaining to be elucidated. In this article we outline the different techniques used to study the cell cycle and its regulation. These include: establishing that the cell cycle is arrested by propidium iodide staining followed by FACS analysis or by measuring 3H-thymidine incorporation into DNA; measuring the amount of cyclin/cdk associated kinase activity; assessing the steady-state expression profiles of cyclins, cdks and ckis by immunoblotting; and investigating the formation of complexes between these proteins by coimmunoprecipitations. Caveats and advantages of each technique are discussed. Following this paradigm yielded the discovery of the cell cycle inhibitors p27Kip1 and p21Cip1 and could very well lead to the discovery or novel cell cycle regulatory mechanisms.  相似文献   

10.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

11.
12.
13.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

14.
Cell cycle progression is tightly regulated by cyclins, cyclin-dependent kinases (cdks) and related inhibitory phophatases. Here, we employed mitotic selection to synchronize the C6 glioma cell cycle at the start of the G1 phase and mapped the temporal regulation of selected cyclins, cdks and inhibitory proteins throughout the 12 h of G1 by immunoblot analysis. The D-type cyclins, D3 and D1, were differentially expressed during the C6 glioma G1 phase. Cyclin D1 was up-regulated in the mid-G1 phase (4-6 h) while cyclin D3 expression emerged only in late G1 (9-12 h). The influence of the anticonvulsant agent valproic acid (VPA) on expression of cyclins and related proteins was determined, since its teratogenic potency has been linked to cell cycle arrest in the mid-G1 phase. Exposure of C6 glioma to VPA induced a marked up-regulation of cyclin D3 and decreased expression of the proliferating cell nuclear antigen. In synchronized cell populations, increased expression of cyclin D3 by VPA was detected in the mid-G1 phase (3-5 h). Immunocytochemical localization demonstrated rapid intracellular translocation of cyclin D3 to the nucleus following VPA exposure, suggesting that VPA-induced cell cycle arrest may be mediated by precocious activation of cyclin D3 in the G1 phase.  相似文献   

15.
16.
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and subsequent SCF(skp2)-dependent ubiquitylation. However, detailed analysis of this process revealed the existence of additional pathways that regulate the abundance of the protein in early G1 and as cells exit quiescence. Here, we report on a molecular mechanism that regulates p27 stability by phosphorylation at T198. Phosphorylation of p27 at T198 prevents ubiquitin-dependent degradation of free p27. T198 phosphorylation also controls progression through the G1 phase of the cell cycle by regulating the association of p27 with cyclin-cdk complexes. Our results unveil the molecular composition of a pathway, which regulates the abundance and activity of p27kip1 during early G1. They also explain how the T187- and the T198-dependent turnover systems synergize to allow cell cycle progression in G1.  相似文献   

17.
Cell cycle phase transition is regulated in part by the trimeric enzyme, cyclin-dependent kinase activating kinase (CAK) which phosphorylates and activates cyclin-dependent kinases (cdks). Protein kinase C (PKC) inhibitors prevent cell cycle phase transition, suggesting a fundamental role for PKCs in cell cycle regulation. We report that in glioma cells, CAK (cdk7) is constitutively associated with PKC-iota. In vitro phosphorylation, co-immunoprecipitation, and analysis of phosphorylated proteins by autoradiography indicate that CAK (cdk7) is a substrate for PKC-iota and PKC-betaII hyperphosphorylation. These results establish a role for PKC-iota and PKC-betaII in the activation of CAK during the glioma cell cycle.  相似文献   

18.
The APC/C is an E3 ubiquitin ligase that, by targeting substrates for proteasomal degradation, plays a major role in cell cycle control. In complex with one of two WD40 activator proteins, Cdc20 or Cdh1, the APC/C is active from early mitosis through to late G1 and during this time targets many critical regulators of the cell cycle for degradation. However, this destruction is carefully ordered to ensure that cell cycle events are executed in a timely fashion. Recent studies have begun to shed light on how the APC/C selects different substrates at different times in the cell cycle. One particular problem is how the APC/C recognizes its first set of substrates, Nek2A and cyclin A, in early mitosis when, at this time, the spindle assembly checkpoint (SAC) inhibits most APC/C-dependent degradation. The answer may lie in how substrates are recruited to the APC/C. While checkpoint-dependent substrates appear to require Cdc20 for recruitment, experiments on the early mitotic substrate Nek2A demonstrate that it can bind the APC/C in the absence of Cdc20. The direct interaction of substrates with core subunits of the APC/C could allow their degradation to proceed unhindered even when the SAC is active.  相似文献   

19.
20.
In early embryonic development, the cell cycle is paced by a biochemical oscillator involving cyclins and cyclin-dependent kinases (cdks). Essentially the same machinery operates in all eukaryotic cells, although after the first few divisions various braking mechanisms (the so-called checkpoints) become significant. Haase and Reed have recently shown that yeast cells have a second, independent oscillator which coordinates some of the events of the G1 phase of the cell cycle.(1) Although the biochemical nature of this oscillator is not known,it seems unlikely to be a redundant cyclin/cdk system. BioEssays 22:3-5, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号