首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
Sulfation of endothelial glycoproteins by the sulfotransferase GlcNAc6ST-2 is a regulatory modification that promotes binding of the leukocyte adhesion molecule L-selectin. GlcNAc6ST-2 is a member of a family of related enzymes that act on similar carbohydrate substrates in vitro but discrete glycoproteins in vivo. We demonstrate that GlcNAc6ST-1, -2, and -3 have distinct Golgi distributions, with GlcNAc6ST-1 confined to the trans-Golgi network, GlcNAc6ST-3 confined to the early secretory pathway, and GlcNAc6ST-2 distributed throughout the Golgi. Their localization was correlated with preferred activity on either N-linked or O-linked glycoproteins. A chimera comprising the localization domain of GlcNAc6ST-1 fused to the catalytic domain of GlcNAc6ST-2 was confined to the trans-Golgi network and adopted the substrate preference of GlcNAc6ST-1. We propose a model in which Golgi enzyme localization and competition orchestrate the biosynthesis of L-selectin ligands.  相似文献   

2.
3.
4.
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from adenosine 3'-phosphate,5'-phosphosulfate to the C-6 position of the non-reducing GlcNAc. Three human GlcNAc6STs, namely GlcNAc6ST-1, GlcNAc6ST-2 (HEC-GlcNAc6ST), and GlcNAc6ST-3 (I-GlcNAc6ST), were produced as fusion proteins to protein A, and their substrate specificities as well as their enzymological properties were determined. Both GlcNAc6ST-1 and GlcNAc6ST-2 efficiently utilized the following oligosaccharide structures as acceptors: GlcNAcbeta1-6[Galbeta1-3]GalNAc-pNP (core 2), GlcNAcbeta1-6ManOMe, and GlcNAcbeta1-2Man. The ratios of activities to these substrates were not significantly different between the two enzymes. However, GlcNAc6ST-2 but not GlcNAc6ST-1 acted on core 3 of GlcNAcbeta1-3GalNAc-pNP. GlcNAc6ST-3 used only the core 2 structure among the above mentioned oligosaccharide structures. The ability of GlcNAc6ST-1 to sulfate core 2 structure as efficiently as GlcNAc6ST-2 is consistent with the view that GlcNAc6ST-1 is also involved in the synthesis of l-selectin ligand. Indeed, cells doubly transfected with GlcNAc6ST-1 and fucosyltransferase VII cDNAs supported the rolling of L-selectin-expressing cells. The activity of GlcNAc6ST-2 on core 3 and its expression in mucinous adenocarcinoma suggested that this enzyme corresponds to the sulfotransferase, which is specifically expressed in mucinous adenocarcinoma (Seko, A., Sumiya, J., Yonezawa, S., Nagata, K., and Yamashita, K. (2000) Glycobiology 10, 919-929).  相似文献   

5.
Two members of the N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) family, GlcNAc6ST-1 and GlcNAc6ST-2, function in the biosynthesis of 6-sulfo sialyl Lewis X-capped glycoproteins expressed on high endothelial venules (HEVs) in secondary lymphoid organs. Thus, both enzymes play a critical role in L-selectin-expressing lymphocyte homing. Human GlcNAc6ST-1 is encoded by a 1593-bp open reading frame exhibiting two 5' in-frame methionine codons spaced 141 bp apart. Both resemble the consensus sequence for translation initiation. Thus, it has been hypothesized that both long and short forms of GlcNAc6ST-1 may be present, although endogenous expression of either form has not been confirmed in humans. Here, the authors developed an antibody recognizing amino acid residues between the first two human GlcNAc6ST-1 methionines. This antibody specifically recognizes the long form of the enzyme, a finding validated by Western blot analysis and immunofluorescence cytochemistry of HeLa cells misexpressing long and/or short forms of human GlcNAc6ST-1. Using this antibody, the authors carried out immunofluorescence histochemistry of human lymph node tissue sections and found endogenous expression of the long form of the enzyme in human tissue, predominantly in the trans-Golgi network of endothelial cells that form HEVs.  相似文献   

6.
We have identified a novel galactose 3-O-sulfotransferase, termed Gal3ST-4, by analysis of an expression sequence tag using the amino acid sequence of human cerebroside 3'-sulfotransferase (Gal3ST-1). The isolated cDNA contains a single open reading frame coding for a protein of 486 amino acids with a type II transmembrane topology. The amino acid sequence of Gal3ST-4 revealed 33%, 39%, and 30% identity to human Gal3ST-1, Gal beta 1-->3/4GlcNAc:-->3'-sulfotransferase (Gal3ST-2) and Gal beta 1-->4GlcNAc:-->3'-sulfotransferase (Gal3ST-3), respectively. The Gal3ST-4 gene comprised at least four exons and was located on human chromosome 7q22. Expression of Gal3ST-4 in COS-7 cells produced a sulfotransferase activity that catalyzes the transfer of [(35)S]sulfate to the C-3' position of Gal beta 1-->3GalNAc alpha 1-O-Bn. Gal3ST-4 recognizes Gal beta 1-->3GalNAc and Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc as good substrates, but not Gal beta 1-->3GalNAc(OH) or Gal beta 1-->3/4GlcNAc. Asialofetuin is also a good substrate, and the sulfation was found exclusively in O-linked glycans that consist of the Gal beta 1-->3GalNAc moiety, suggesting that the enzyme is specific for O-linked glycans. Northern blot analysis revealed that 2.5-kilobase mRNA for the enzyme is expressed extensively in various tissues. These results suggest that Gal3ST-4 is the fourth member of a Gal:-->3-sulfotransferase family and that the four members, Gal3ST-1, Gal3ST-2, Gal3ST-3, and Gal3ST-4, are responsible for sulfation of different acceptor substrates.  相似文献   

7.
N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the C-6 position of non-reducing GlcNAc. Human GlcNAc6ST-1 was expressed as a fusion protein with protein A in an insect cell line (Tn 5 cells) using the baculovirus system. The recombinant enzyme was purified to homogeneity by IgG Sepharose column chromatography. The substrate specificity and the kinetic properties of the enzyme were similar to those of the enzyme expressed in the mammalian system. The purified recombinant enzyme was used to synthesize 6-sulfo GlcNAcbeta1-3Galbeta1-4Glc, which was identified by time of flight mass spectrometry. This sulfated trisaccharide served as a better substrate for microsomal galactosyltransferase from the mouse colon compared to 6-sulfo GlcNAc. The purified recombinant enzyme was also used to sulfate oligosaccharide chains on fibrinogen after enzymatic desialylation and degalactosylation to expose nonreducing GlcNAc residues. It is known that desialylation greatly increases the rate of clotting of fibrinogen after the addition of thrombin. Subsequent sulfation of desialylated and degalactosylated fibrinogen slightly decreased the rate of clotting. The recombinant GlcNAc6ST-1 is a useful reagent for 6-sulfate exposed GlcNAc residues both in oligosaccharides and in glycoproteins.  相似文献   

8.
A significant proportion of the alpha2,6-sialyltransferase of protein Asn-linked glycosylation (ST6Gal I) forms disulfide-bonded dimers that exhibit decreased activity, but retain the ability to bind asialoglycoprotein substrates. Here, we have investigated the subcellular location and mechanism of ST6Gal I dimer formation, as well as the role of Cys residues in the enzyme's trafficking, localization, and catalytic activity. Pulse-chase analysis demonstrated that the ST6Gal I disulfide-bonded dimer forms in the endoplasmic reticulum. Mutagenesis experiments showed that Cys-24 in the transmembrane region is required for dimerization, while catalytic domain Cys residues are required for trafficking and catalytic activity. Replacement of Cys-181 and Cys-332 generated proteins that are largely retained in the endoplasmic reticulum and minimally active or inactive, respectively. Replacement of Cys-350 or Cys-361 inactivated the enzyme without compromising its localization or processing, suggesting that these amino acids are part of the enzyme's active site. Replacement of Cys-139 or Cys-403 generated proteins that are catalytically active and appear to be more stably localized in the Golgi, since they exhibited decreased cleavage and secretion. The Cys-139 mutant also exhibited increased dimer formation suggesting that ST6Gal I dimers may be critical in the oligomerization process involved in stable ST6Gal I Golgi localization.  相似文献   

9.
10.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   

11.
Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc3Man9(GlcNAc)2, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associated with the Golgi. These include mannosidase I (removes 1-2 mannose residues from Man6-9[GlcNAc]2), mannosidase II (removes mannose residues from GlcNAcMan5[GlcNAc]2), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). We have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltransferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.  相似文献   

12.
The Golgi apparatus is enriched in specific enzymes involved in the maturation of carbohydrates of glycoproteins. Among them, alpha-mannosidases IA, IB and II are type II transmembrane Golgi-resident enzymes that remove mannose residues at different stages of N-glycan maturation. alpha-Mannosidases IA and IB trim Man9GlcNAc2 to Man5GlcNAc2, while alpha-mannosidase II acts after GlcNAc transferase I to remove two mannose residues from GlcNAcMan5GlcNAc2 to form GlcNAcMan3GlcNAc2 prior to extension into complex N-glycans by Golgi glycosyltransferases. The objective of this study is to examine the expression as well as the subcellular localization of these Golgi enzymes in the various cells of the male rat reproductive system. Our results show distinct cell-and region-specific expression of the three mannosidases examined. In the testis, only alpha-mannosidase IA and II were detectable in the Golgi apparatus of Sertoli and Leydig cells, and while alpha-mannosidase IB was present in the Golgi apparatus of all germ cells, only the Golgi apparatus of steps 1-7 spermatids was reactive for alpha-mannosidase IA. In the epididymis, principal cells were unreactive for alpha-mannosidase II, but they expressed alpha-mannosidase IB in the initial segment and caput regions, and alpha-mannosidase IA in the corpus and cauda regions. Clear cells expressed alpha-mannosidase II in all epididymal regions, and alpha-mannosidase IB only in the caput and corpus regions. Ultrastructurally, alpha-mannosidase IB was localized mainly over cis saccules, alpha-mannosidase IA was distributed mainly over trans saccules, and alpha-mannosidase II was localized mainly over medial saccules of the Golgi stack. Thus, the cell-specific expression and distinct Golgi subcompartmental localization suggest that these three alpha-mannosidases play different roles during N-glycan maturation.  相似文献   

13.
N-Acetylglucosamine 6-O-sulfotransferases (GlcNAc6STs) catalyze the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 position of non-reducing N-acetylglucosamine. N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) is the first cloned GlcNAc6ST and is involved in the synthesis of the L-selectin ligand. We noticed conserved C-terminal segments among GlcNAc6STs and produced mutant enzymes to reveal the functional significance. Mutant enzymes were transiently expressed as fusion proteins with protein A in COS-7 cells, and some of them were purified to homogeneity by IgG Sepharose column chromatography. Deletion of a C-terminal segment (amino acid numbers 479-483) resulted in a complete loss of the activity, when assayed using GlcNAcbeta1-6ManOMe as a substrate. Upon site-directed mutagenesis of the C-terminal region, three mutants, L477A, L478A and L483A, exhibited reduced activity. The K(M )values for GlcNAcbeta1-6ManOMe of L477A and L478A were 4 times higher than the K(M) of the wild-type enzyme, while that of L483A was unchanged. On the other hand the K(M )for PAPS of L483A was 3 times higher than that of the wild-type enzyme, while the values of L477A and L478A were unchanged. Furthermore, the L477A mutant acted on a core 3 structure (GlcNAcbeta1-3GalNAc-pNP), while the wild-type enzyme does not. These results demonstrate a role for leucine residues in the C-terminal region in the enzymatic activity.  相似文献   

14.
Three subfamilies of mammalian Class 1 processing alpha1,2-mannosidases (family 47 glycosidases) play critical roles in the maturation of Asn-linked glycoproteins in the endoplasmic reticulum (ER) and Golgi complex as well as influencing the timing and recognition for disposal of terminally unfolded proteins by ER-associated degradation. In an effort to define the structural basis for substrate recognition among Class 1 mannosidases, we have crystallized murine Golgi mannosidase IA (space group P2(1)2(1)2(1)), and the structure was solved to 1.5-A resolution by molecular replacement. The enzyme assumes an (alphaalpha)(7) barrel structure with a Ca(2+) ion coordinated at the base of the barrel similar to other Class 1 mannosidases. Critical residues within the barrel structure that coordinate the Ca(2+) ion or presumably bind and catalyze the hydrolysis of the glycone are also highly conserved. A Man(6)GlcNAc(2) oligosaccharide attached to Asn(515) in the murine enzyme was found to extend into the active site of an adjoining protein unit in the crystal lattice in a presumed enzyme-product complex. In contrast to an analogous complex previously isolated for Saccharomyces cerevisiae ER mannosidase I, the oligosaccharide in the active site of the murine Golgi enzyme assumes a different conformation to present an alternate oligosaccharide branch into the active site pocket. A comparison of the observed protein-carbohydrate interactions for the murine Golgi enzyme with the binding cleft topologies of the other family 47 glycosidases provides a framework for understanding the structural basis for substrate recognition among this class of enzymes.  相似文献   

15.
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.  相似文献   

16.
17.
Among the enzymes of the carbohydrate sulfotransferase family, human corneal GlcNAc 6-O-sulfotransferase (hCGn6ST, also known as human GlcNAc6ST-5/GST4beta) and human intestinal GlcNAc 6-O-sulfotransferase (hIGn6ST or human GlcNAc6ST-3/GST4alpha) are highly homologous. In the mouse, intestinal GlcNAc 6-O-sulfotransferase (mIGn6ST or mouse GlcNAc6ST-3/GST4) is the only orthologue of hCGn6ST and hIGn6ST. In the previous study, we found that hCGn6ST and mIGn6ST, but not hIGn6ST, have sulfotransferase activity to produce keratan sulfate (Akama, T. O., Nakayama, J., Nishida, K., Hiraoka, N., Suzuki, M., McAuliffe, J., Hindsgaul, O., Fukuda, M., and Fukuda, M. N. (2001) J. Biol. Chem. 276, 16271-16278). In this study, we analyzed the substrate specificities of these sulfotransferases in vitro using synthetic carbohydrate substrates. We found that all three sulfotransferases can transfer sulfate to the nonreducing terminal GlcNAc of short carbohydrate substrates. Both hCGn6ST and mIGn6ST, but not hIGn6ST, transfer sulfate to longer carbohydrate substrates that have poly-N-acetyllactosamine structures, suggesting the involvement of hCGn6ST and mIGn6ST in production of keratan sulfate. To clarify further the involvement of hCGn6ST in biosynthesis of keratan sulfate, we reconstituted the biosynthetic pathway in vitro by sequential enzymatic treatment of a synthetic carbohydrate substrate. Using four enzymes, beta1,4-galactosyltransferase-I, beta1,3-N-acetylglucosaminyltransferase-2, hCGn6ST, and keratan sulfate Gal 6-O-sulfotransferase, we were able to synthesize in vitro a product that conformed to the basic structural unit of keratan sulfate. Based on these results, we propose a biosynthetic pathway for N-linked keratan sulfate on corneal proteoglycans.  相似文献   

18.
R E Chapman  S Munro 《The EMBO journal》1994,13(20):4896-4907
Mnt1p is an alpha 1.2-mannosyltransferase which resides in an early compartment of the Saccharomyces cerevisiae Golgi apparatus. We have shown that the signal-anchor region is sufficient, and the transmembrane domain necessary, for its normal Golgi localization. This is similar to the transmembrane domain-mediated retention of mammalian glycosyltransferases, and distinct from the tail-mediated recycling retention of certain mammalian and yeast trans-Golgi proteins. To examine the mechanism involved in transmembrane domain-mediated retention, we have isolated six classes of mutants which fail to retain Mnt1p-reporter fusions in the early Golgi. These mutants all show additional phenotypes which are consistent with alterations in Golgi function. We have called the mutant classes 'gem', for Golgi enzyme maintenance. GEM3 is identical to the previously cloned gene ANP1, and homologous to VAN1 and MNN9. Together, these define a new class of proteins involved in the organization and functioning of the secretory pathway. Interestingly, Anp1p is localized to the endoplasmic reticulum (ER), implying that some function of the ER is required to maintain a functional Golgi apparatus.  相似文献   

19.
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.  相似文献   

20.
Murine alpha1,2-mannosidase IB is a type II transmembrane protein localized to the Golgi apparatus where it is involved in the biogenesis of complex and hybrid N-glycans. This enzyme consists of a cytoplasmic tail, a transmembrane domain followed by a "stem" region and a large C-terminal catalytic domain. To analyze the determinants of targeting, we constructed various deletion mutants of murine alpha1,2-mannosidase IB as well as alpha1,2-mannosidase IB/yeast alpha1,2-mannosidase and alpha1,2-mannosidase IB/GFP chimeras and localized these proteins by fluorescence microscopy, when expressed transiently in COS7 cells. Replacing the catalytic domain of alpha1,2-mannosidase IB with that of the homologous yeast alpha1,2-mannosidase and deleting the "stem" region in this chimera had no effect on Golgi targeting, but caused increased cell surface localization. The N-terminal tagged protein lacking a catalytic domain was also localized to the Golgi. In the latter case, when the stem region was partially or completely removed, the protein was found in both the ER and the Golgi. A chimera consisting of the alpha1,2-mannosidase IB N-terminal region (cytoplasmic and transmembrane domains plus 10 amino acids of the "stem" region) and GFP was localized mainly to the Golgi. Deletion of 30 out of 35 amino acids in the cytoplasmic tail had no effect on Golgi localization. A GFP chimera lacking the entire cytoplasmic tail was found in both the ER and the Golgi. These results indicate that the transmembrane domain of alpha1,2-mannosidase IB is a major determinant of Golgi localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号