首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding responses to naloxone and butorphanol tartrate were measured in Fisher-344 rats with ages of 2, 12, 22 and 28 months. The two younger groups were 10–100 times more sensitive than the older groups to the suppressive effects of naloxone on feeding. Additionally, the older rats were less responsive to the feeding enhancement following butorphanol injections. These results are consistent with reports of age-related changes in endogenous opioid systems.  相似文献   

2.
Peripheral administration of butorphanol tartrate markedly enhanced feeding from 0800 to 1400 hours when compared with vehicle controls. Butorphanol tartrate feeding was not antagonized by doses of naloxone as high as 10 mg/kg. These data support the concept that the kappa or sigma opiate receptors are involved in feeding behavior.It is well recognized that the endogenous opiates play a role in the central regulation of appetite (1, 2, 3, 4). Numerous studies have shown that The endogenous opioid peptides and morphine can initiate feeding under various conditions (5–12) whereas the opiate antagonist, naloxine can reduce food consumption (13–20). Recently, the endogenous opiod peptide, dynorphin, has been reported to enhance food intake (12–25).Much evidence has been accumulated indicating that a number of opiate receptors are present in the brain, each one having a high affinity for a specific endogenous opioid peptide (26, 27). Both the cyclazocine related compounds (28) and the feeding enhancer, dynorphin (29–32), have been reported to be specific kappa receptor agonists. In the present study, we report on the effect of the morphinan congener, butorphanol tartrate (33), on ingestive behaviour.  相似文献   

3.
Opioids have long been known to have an important role in feeding behavior, particularly related to the rewarding aspects of food. Considerable behavioral evidence suggests that sucrose consumption induces endogenous opioid release, affecting feeding behavior as well as other opioid-mediated behaviors, such as analgesia, dependence, and withdrawal. In the present study, rats were given access to a 10% sucrose solution or water for 3 wk, then they were injected with 10 mg/kg naloxone or saline. Brains were subsequently analyzed for c-Fos immunoreactivity (c-Fos-IR) in limbic and autonomic regions in the forebrain and hindbrain. Main effects of sucrose consumption or naloxone injection were seen in several areas, but a significant interaction was seen only in the central nucleus of the amygdala and in the lateral division of the periaqueductal gray. In the central nucleus of the amygdala, naloxone administration to those rats drinking water significantly increased c-Fos-IR, an effect that was significantly enhanced by sucrose consumption, suggesting an upregulation of endogenous opioid tone in this area. The data from this study indicate that the central nucleus of the amygdala has a key role in the integration of gustatory, hedonic, and autonomic signals as they relate to sucrose consumption, if not to food intake regulation in general. Furthermore, the data from this study lend further support to the hypothesis that sucrose consumption induces the release of endogenous opioids.  相似文献   

4.
Posterior pituitaries of obese mice (ob/ob) contained significantly more immunoreactive dynorphin (P less than .01) and leu-enkephalin (P less than .01) than their lean littermates. Drinking in obese mice was stimulated by 0.3%, and feeding by 10%, of the dose of ethylketocyclazocine, a kappa receptor agonist, needed to produce extra feeding and drinking in lean mice. Obese mice also showed greater and longer lasting suppression of ingestion after MR-2266, a kappa antagonist, than did lean mice. MR-2266 was much more effective than naloxone in suppressing schedule-induced polydipsia in rats. These results indicate that kappa receptors are involved in feeding and drinking and that obesity is associated with changes in these receptors and their ligands.  相似文献   

5.
The long-lasting opiate antagonist, naltrexone (NTX), was examined for its effects on various types of consummatory behavior in male golden hamsters and rats. Rat, but not hamster, 24 hr food and water intakes were significantly decreased by four daily NTX (10.0 mg/kg) injections. Hamsters displayed a minimal night to day feeding ratio compared to rats. hamsters increased food intake following insulin (50 U/kg) administration, but not after 24 hr food deprivation (FD) or 2-deoxy-D-glucose (2-DG; 800 mg/kg) injections. NTX (1.0 and 10 mg/kg) had no effect on feeding, but markedly attenuated hamster drinking induced by 48 hr water deprivation or hypertonic saline injection. Dexamethasone (DEX), a glucocorticoid which depletes pituitary β-endorphin and produces anorexia in rats, had no effect on daily hamster intake. Since the normal feeding profile of the hamster is similar to that of naloxone and DEX-treated rats, hamsters appear to lack an opiate-sensitive feeding system. In contrast, stimulated drinking behavior of hamsters operates through an opiate-sensitive mechanism. Thus, there are marked species differences concerning the involvement of endogenous opioids is consummatory behavior.  相似文献   

6.
S J Cooper 《Life sciences》1983,32(10):1043-1051
Benzodiazepines reliably produce overconsumption of food and fluids. Opiate antagonists, naloxone and naltrexone, block the benzodiazepine-induced hyperphagia and hyperdipsia at low doses. Hence, activation of endogenous opioid mechanisms may be closely involved in the benzodiazepine facilitatory effects on ingestional behavior. Evidence is reviewed that opiate antagonists diminish feeding and drinking responses, and may enhance satiety processes in feeding and drinking, in addition to selectively diminishing the palatability of attractive foods and fluids. It is proposed that a single mechanism of action of the opiate antagonists would be sufficient to account for both effects on feeding and drinking. Biochemical data confirm that acute benzodiazepine treatment in vivo is associated with a naloxone-reversible release of striatal enkephalin. It is possible therefore that there is a close association between the behavioral and biochemical data, which both show that acute benzodiazepine effects are reversed by opiate antagonists. The implied relationship between benzodiazepine and endogenous opioid mechanisms may be relevant to the question of concurrent opiate-benzodiazepine abuse.  相似文献   

7.
Involvement of opioid receptor subtypes in rat feeding behavior   总被引:2,自引:0,他引:2  
The short-acting opiate antagonist naloxone decreases food intake in three models of ingestive behavior: free feeding, food-deprivation induced feeding and deoxyglucose-induced feeding. Twenty-four hours after administration, the long-acting, mu1 selective antagonist naloxonazine inhibits food intake to the same extent as naloxone in freely feeding and food-deprived rats, but not in animals treated with 2-deoxyglucose. These results indicate that 1) opiates modulate feeding through multiple opioid receptor mechanisms, one of which is the mu subtype, and 2) the feeding observed in various experimental paradigms are modulated by different receptor subtypes. Furthermore, these results illustrate the usefulness of naloxone in defining a behavior as opioid but point out its limitations in discriminating between opioid receptor subtypes.  相似文献   

8.
S G Holtzman 《Life sciences》1979,24(3):219-226
Naloxone (0.3–10 mg/kg) produced a dose-related suppression of eating and drinking in rats that had been deprived of food for 48 hr or water for 24 hr. The suppression of water intake by naloxone was unaltered in rats that had been physically dependent upon morphine one week earlier and which were tolerant to the analgesic effect of morphine at the time naloxone was tested. These results confirm the ability of naloxone to suppress appetitive behavior in the rat but do not resolve the issue of whether or not this effect of naloxone is the consequence of an interaction with an endogenous opioid system.  相似文献   

9.
Opiate-sensitive feeding behavior has now been demonstrated in a number of species. We sought information on which opioid receptors might be involved in the observed feeding behaviors. Guinea pigs are known to have higher concentrations of the opioid kappa receptor than any other laboratory animal, so we compared the feeding suppressive potency of the general opiate antagonist, diprenorphine to that of the relatively more mu-specific antagonist, naloxone in that species. We found that diprenorphine was over twenty times more effective than naloxone in suppressing feeding in guinea pigs, suggesting the importance of receptors other than mu in feeding initiation in the guinea pig. Confirmatory evidence for the role of kappa receptors was sought, but not found, in comparisons of the effectiveness of different types of opiate agonists in promoting feeding in these animals. These agonists suppressed, rather than stimulated feeding. We conclude that no feeding stimulatory effects of opiates can be demonstrated in guinea pigs. This observation may indicate that opioids play little role in the natural regulation of feeding in this species or that opioids result in prolonged sedation during which the animals fail to eat. The greater feeding suppressive potency of diprenorphine, a general opiate antagonist, versus naloxone, a mu-preferential antagonist, indicates that to whatever extent opiates are involved in guinea pig feeding, the opiate effect is probably not a mu receptor effect.  相似文献   

10.
The effects of the anticholinergic drug benzilonium bromide and the opiate receptor blocker naloxone, given alone or in combination, on the acid secretory response and on plasma gastrin releasing peptide (GRP) response to sham feeding was tested in eight duodenal ulcer (DU) patients. Naloxone alone had no effect on the acid secretion after sham feeding. Benzilonium reduced basal acid secretion and the acid response to sham feeding but did not abolish the response. The combination of benzilonium and naloxone was not more effective than benzilonium alone. Neither drug, nor the combination had any effect on plasma GRP following sham feeding. It is concluded that enkephalins are unlikely to participate in the acid response to sham feeding in patients with DU.  相似文献   

11.
J. Birk  R.G. Noble 《Life sciences》1981,29(11):1125-1131
Three experiments investigated the effects of the intragastric administration of the benzodiazepine diazepam on feeding in non-deprived Syrian hamsters (mesocricetus auratus). In the first experiment diazepam (0, 0.5, 1.0, 2.0, and 4.0 mg/kg) produced dose dependant increases in feeding. 4.0 mg/kg of diazepam produced significantly more feeding than the other doses tested and the lowest dose tested (0.5 mg/kg) produced a significant increase in feeding. In the second experiment naloxone (10 mg/kg) partially antagonized the effect of 4 mg/kg of diazepam on feeding. In the third experiment the ability of naloxone (0.1, 1.0, 5.0, 10.0 or 20 mg/kg) to reduce feeding produced by either 4 mg/kg or 2 mg/kg of diazepam was tested. Naloxone partially antagonized the effects of 4 mg/kg of diazepam on feeding in a dose dependant manner. While 2 mg/kg of diazepam produced significantly less feeding than 4 mg/kg, naloxone did not antagonize the effect of 2 mg/kg on feeding. The results suggest that two mechanisms are involved in diazepam-induced feeding in hamsters. The high dose of diazepam may produce increased feeding by activating the endorphin system while the low dose of diazepam produces increased feeding via a naloxone insensitive mechanism.  相似文献   

12.
A.S. Levine  J.E. Morley   《Peptides》1984,5(6):1025-1029
Neuropeptide Y (NPY) is a 36 amino acid peptide with potent cardiovascular effects. In the present study, intraventricular injection of NPY was shown to markedly stimulate feeding and drinking during the illuminated period of the light/dark cycle, a time when rats ingest small amounts of food. It also enhanced nocturnal food and water intake following a 24 hour period of food deprivation and during nocturnal feeding. The NPY induction of food intake was suppressed by the opiate antagonist, naloxone, and by the dopamine antagonist, haloperidol. Phentolamine, an alpha adrenergic antagonist, failed to suppress NPY-induced feeding. Based on the maximum quantity of food which was ingested following central administration of NPY, this peptide appears to represent one of the most potent stimulators of feeding yet to be described.  相似文献   

13.
Opiate antagonists have been shown to reliably attenuate drinking behavior. Recent research points to a central site of action for this antidipsogenic effect. To pursue this issue of site specificity, naloxone, a specific opiate antagonist, was delivered into a number of discrete subcortical areas in 23 hour water-deprived rats. Water intake was measured at 5, 15, 30 and 60 minutes post drug injection. Compared to saline control injections, naloxone reliably depressed water intake, in a dose-related manner, in lateral hypothalamus, preoptic area and zona incerta. Previous research has repeatedly implicated these areas in drinking behavior. Placements which were not generally effective included lateral ventricle, nucleus accumbens, substantia nigra and cortex/corpus callosum. Latency to drink was never affected by any dose of naloxone injected into any site, suggesting an opioid influence on mechanisms involved in termination and/or maintenance rather than on initiation of drinking.  相似文献   

14.
Opioid regulation of food intake and body weight in humans   总被引:1,自引:0,他引:1  
Relatively few studies of humans have evaluated the effects of opioids on food intake and body weight. Most have focused on the potential role of opioids in the etiology of obesity. Measurements of endogenous opioids in plasma or spinal fluid of humans reveal higher levels, particularly of beta-endorphin, in obese subjects. Opioid agonists such as methadone and butorphanol tartrate stimulate food intake, and all studies with naloxone, an opioid antagonist, demonstrate a reduction of short-term food intake in obese or lean humans. Long-term studies with naltrexone, an antagonist similar to naloxone, show no effect on food intake or body weight. Opioid agonists or antagonists have little effect on nutrient selection in humans. The effects on feeding-related hormones is equivocal. Further studies with more specific opioid receptor activities are needed.  相似文献   

15.
Suppression of food intake and body weight gain by naloxone in rats   总被引:1,自引:0,他引:1  
The effect of acute and chronic administration of naloxone on food acquisition and weight gain in rats was studied in 3 experiments. One injection of a sparingly-soluble salt of naloxone in slow-release vehicle markedly lowered mean food intake over that of control rats injected with the vehicle only. Mean body weight of the naloxone-injected rats was significantly lower than that of the control group for one week.Repeated evening injections (2000 h) of naloxone hydrochloride in saline tended to reduce the night-time feeding below control levels throughout the 10-day period of naloxone administration. Food intake was significantly lower in the 4- and 8-h periods after the first injection of naloxone than that on the preceding saline control night. The initial decreases were offset by increased day-time feeding so that total daily food intake was not significantly altered over the 10 days. When saline was substituted for naloxone, food intake increased.Rats given naloxone following 24 h of fasting consumed significantly less food and gained less weight during 4 h of access to food compared to those receiving saline. After a 48-h fast naloxone-treated rats also gained significantly less body weight than those given saline, but the reduction in food intake was not statistically significant. These results suggest the possibility that endorphins may have a modulating effect on feeding activity.  相似文献   

16.
Effects of several environmental situations on pain threshold were studied in CFW male mice. Immobilization induced significant and naloxone reversible analgesia. Isolation produced analgesia which was partially reversed by naloxone. One minute swimming in + 4 degrees C or + 42 degrees C water increased naloxone reversible analgesia. Isolation produced analgesia which was partially reversed by naloxone. One minute swimming in 4 degrees C or + 42 degrees C water increased naloxone irreversible pain threshold. Other situations: drinking 2% NaCl solution, disturbance of light-dark cycle or social aggregation did not produce analgesia. The role of these situations as stress-inducers, as well as the role of endogenous opioid peptides in stress-induced analgesia, were discussed.  相似文献   

17.
Although the physiologic function of the gastrointestinal hormone motilin remains uncertain, plasma levels of this peptide vary with migrating myoelectric complexes (MMCs) in the small intestine. In the fed state, both MMCs and plasma motilin are suppressed. During fasting, cyclical peaks of motilin in plasma occur at the same time as Phase III of the MMC cycle occurs in the duodenum. This dependence of motilin concentrations in plasma on the feeding state of the animal prompted an investigation of the effects of motilin on feeding behavior. Intraperitoneal injection of motilin into fasted, but not fed, rats stimulated eating in a dose dependent manner. A significant stimulation of feeding was seen at doses of 5 and 10 μg/kg. Sated rats did not eat whether injected with motilin or vehicle. The feeding response to motilin was blocked by prior injection of the rats with naloxone, naltrexone, or pentagastrin. The dose response suppression of food intake by naloxone was similar in fasted animals treated with motilin or vehicle. Motilin may function as a hunger hormone during periods of fasting.  相似文献   

18.
N Sakatani  A Inui  T Inoue  M Oya  H Morioka  S Baba 《Peptides》1987,8(4):651-656
Cholecystokinin octapeptide (CCK-8, 1, 190 pmol/5 min) decreased food intake and water consumption in two models of ingestive behavior, i.e., food deprivation-induced feeding and insulin-induced feeding, when administered into the third (3V) and lateral (LV) cerebral ventricles. In fasted dogs, the suppression of food intake was more prominent after 3V CCK-8, whereas intravenously administered CCK-8 was without effect. Neuropeptide Y (NPY, 1, 190 pmol) had no significant stimulatory effect on food intake and water consumption in fasted as well as satiated dogs, and actually reduced both food and water intake in insulin-treated dogs. There was a slight but significant decrease in food and water intake after 275 nmol naloxone administration in both feeding models, and some of the dogs vomited. In insulin-treated animals, CCK-8 reversed, but NPY potentiated the hypothermic phase of temperature response observed after saline administration, whereas naloxone failed to alter rectal temperature. These results suggest that the effect of CCK-8 on feeding seems to involve central mechanisms in the dog, and that the mechanisms by which CCK-8, NPY and naloxone affect feeding behavior are different.  相似文献   

19.
Removal of drinking water at the start of the dark period reduced food intake in freely feeding rats within 45 min. Both first and later meals were smaller during 7.5 h of water deprivation, but meal frequency did not change. Ingestion of a normal-sized meal (3 g) rapidly increased plasma tonicity when drinking water was withheld, but intravenous infusions of hypertonic NaCl causing similar increases in plasma tonicity did not reduce feeding. Feeding during 6 h of water deprivation was restored by slowly infusing the volume of water normally drunk into the stomach, jejunum, or cecum, but not in the vena cava or hepatic portal vein. The infusions did not alter water or electrolyte excretion or affect food intake in rats allowed to drink. We conclude that the inhibition of feeding seen during water deprivation is mediated by a sensor that is located in the gastrointestinal tract or perhaps in the mesenteric veins draining the gut, but not the hepatic portal vein or the liver. In the absence of drinking water, signals from this sensor provoke the early termination of a meal.  相似文献   

20.
R Yirmiya  M D Holder 《Peptides》1987,8(5):763-767
Opioid peptides and cholecystokinin (CCK) have been shown to play a role in regulation of feeding behavior. Another neuropeptide that has recently been suggested to be involved in feeding is vasopressin. We explored possible interactions between opiates, CCK and vasopressin in feeding regulation by studying feeding suppression produced by naloxone and CCK in Brattleboro (DI) rats, which are homozygous for diabetes insipidus and lack the ability to synthesize vasopressin. Ten DI and 15 age-matched Long Evans (LE) rats were food deprived for 14 hours on two different days and then injected with naloxone (2.5 mg/kg) on one day or saline on the other. Thirty minutes later the food was returned and food and water consumption were measured after 1, 3 and 4 hr. Naloxone suppressed the food consumption of both DI and LE rats but the suppression was greater for the DI rats. This result was specific to feeding as water consumption was suppressed in LE more than in DI rats. Two weeks later, the same rats were food deprived for 6 hours on two different days and then injected with CCK-8 (2.5 micrograms/kg) on one day and with saline on the other. Food was returned one minute after the injection and food and water consumption were measured 30 and 60 minutes later. Food intake was reduced equally for both DI and LE rats. Water intake was not reduced. The results suggest that the suppression of feeding by CCK does not require an intact vasopressinergic system. The greater feeding suppression by naloxone in DI rats may suggest that opiates are interacting with vasopressin in producing their effects on food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号