首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the fliK gene of Salmonella typhimurium commonly cause failure to terminate hook assembly and initiate filament assembly (polyhook phenotype). Polyhook mutants give rise to pseudorevertants which are still defective in hook termination but have recovered the ability to assemble filament (polyhook-filament phenotype). The polyhook mutations have been found to be either frameshift or nonsense, resulting in truncation of the C terminus of FliK. Intragenic suppressors of frameshift mutations were found to be ones that restored the original frame (and therefore the C-terminal sequence), but in most cases with substantial loss of natural sequence and sometimes the introduction of artificial sequence; in no cases did intragenic suppression occur when significant disruption remained within the C-terminal region. By use of a novel PCR protocol, in-frame deletions affecting the N-terminal and central regions of FliK were constructed and the resulting phenotypes were examined. Small deletions resulted in almost normal hook length control and almost wild-type swarming. Larger deletions resulted in loss of control of hook length and poor swarming. The largest deletions severely affected filament assembly as well as hook length control. Extragenic suppressors map to an unlinked gene, flhB, which encodes an integral membrane protein (T. Hirano, S. Yamaguchi, K. Oosawa, and S.-I. Aizawa, J. Bacteriol. 176:5439-5449, 1994; K. Kutsukake, T. Minamino, and T. Yokoseki, J. Bacteriol. 176:7625-7629, 1994). They were either point mutations in the C-terminal cytoplasmic region of FlhB or frameshift or nonsense mutations close to the C terminus. The processes of hook and filament assembly and the roles of FliK and FlhB in these processes are discussed in light of these and other available data. We suggest that FliK measures hook length and, at the appropriate point, sends a signal to FlhB to switch the substrate specificity of export from hook protein to late proteins such as flagellin.  相似文献   

2.
Hook forms a universal joint, which mediates the torque of the flagellar motor to the outer helical filaments. Domain organization of hook protein from Salmonella typhimurium was investigated by exploring thermal denaturation properties of its proteolytic fragments. The most stable part of hook protein involves residues 148 to 355 and consists of two domains, as revealed by deconvolution analysis of the calorimetric melting profiles. Residues 72-147 and 356-370 form another domain, while the terminal regions of the molecule, residues 1-71 and 371-403, avoid a compact tertiary structure in the monomeric state. These folding domains were assigned to the morphological domains of hook subunits known from EM image reconstructions, revealing the overall folding of hook protein in its filamentous state.  相似文献   

3.
M Raha  H Sockett    R M Macnab 《Journal of bacteriology》1994,176(8):2308-2311
filL is a small gene of unknown function that lies within the beginning of a large flagellar operon of Salmonella typhimurium and Escherichia coli. A spontaneous fliL mutant of S. typhimurium, containing a frameshift mutation about 40% from the 3' end of the gene, was moderately motile but swarmed poorly, suggesting that FliL might be a component of the flagellar motor or switch. However, in-frame deletions of the E. coli gene, including an essentially total deletion, had little or no effect on motility or chemotaxis. Thus, FliL does not appear to have a major role in flagellar structure or function and is therefore unlikely to be a component of the motor or switch; the effect on motility caused by truncation of the gene is probably an indirect one.  相似文献   

4.
The length of flagellar hooks isolated from wild-type and mutant cells with various hook lengths were measured on electron micrographs. The length of the wild-type hook showed a narrow distribution with a peak (+/- standard deviation) at 55.0 +/- 5.9 nm, whereas fliK mutants (so-called polyhook mutants) showed a broad distribution of hook lengths ranging from 40 to 900 nm, strongly indicating that FliK is involved in hook length determination. Among pseudorevertants isolated from such polyhook mutants, fliK intragenic suppressors gave rise to polyhook filaments. However, intergenic suppressors mapping to flhB also gave rise to hooks of abnormal length, albeit they were much shorter than polyhooks. Furthermore, double mutations of flhB and flgK (the structural gene for hook-associated protein 1; HAP1) resulted in polyhooks, suggesting another way in which hook length can be affected. The roles of FliK, FlhB, and HAP1 in hook length determination are discussed.  相似文献   

5.
In wild-type Salmonella, the length of the flagellar hook, a structure consisting of subunits of the hook protein FlgE, is fairly tightly controlled at approximately 55 nm. Because fliK mutants produce abnormally elongated hook structures that lack the filament structure, FliK appears to be involved in both the termination of hook elongation and the initiation of filament formation. FliK, a soluble protein, is believed to function together with a membrane protein, FlhB, of the export apparatus to mediate the switching of export substrate specificity (from hook protein to flagellin) upon completion of hook assembly. We have examined the location of FliK during flagellar morphogenesis. FliK was found in the culture supernatants from the wild-type strain and from flgD (hook capping protein), flgE (hook protein) and flgK (hook-filament junction protein) mutants, but not in that from a flgB (rod protein) mutant. The amount of FliK in the culture supernatant from the flgE mutant was much higher than in that from the flgK mutant, indicating that FliK is most efficiently exported prior to the completion of hook assembly. Export was impaired by deletions within the N-terminal region of FliK, but not by C-terminal truncations. A decrease in the level of exported FliK resulted in elongated hook structures, sometimes with filaments attached. Our results suggest that the export of FliK during hook assembly is important for hook-length control and the switching of export substrate specificity.  相似文献   

6.
7.
Bacterial flagellar polyhook fibers were reversibly transformed into a set of helical forms depending on pH, ionic strength and temperature. Electron microscopy with formalin fixation and freeze-drying was useful for observing three-dimensional shapes of various polyhook helices and determining their helical handedness. A Cartesian plot of curvature against twist for these polyhook helices gave a sinusoidal curve as in the case of the polymorphic forms of flagellar filament. In the study on the polymorphism of flagellar filaments. Calladine (1976, 1978) and Kamiya et al. (1979) pointed out that such a relation in the polymorphic forms could be derived from the assumption that the subunits on the near-longitudinal (11-start) helical lines should work as elastic fibers (protofilaments) having two distinct states of conformation. In contrast, the observed twist for the polyhook helices is too large to be explained by the same assumption. Instead, we must assume that subunits on the strongly twisted, 16-start helical line should work as the co-operative protofilament.  相似文献   

8.
FlgD is known to be absolutely required for hook assembly, yet it has not been detected in the mature flagellum. We have overproduced and purified FlgD and raised an antibody against it. By using this antibody, we have detected FlgD in substantial amounts in isolated basal bodies from flgA, flgE, flgH, flgI, flgK, and fliK mutants, in much smaller amounts in those from the wild type and flgL, fliA, fliC, fliD, and fliE mutants, and not at all in those from flgB, flgD, flgG, and flgJ mutants. In terms of the morphological assembly pathway, these results indicate that FlgD is first added to the structure when the rod is completed and is discarded when the hook, having reached its mature length, has the first of the hook-filament junction proteins, FlgK, added to its tip. Immunoelectron microscopy established that FlgD initially is located at the distal end of the rod and eventually is located at the distal end of the hook. Thus, it appears to act as a hook-capping protein to enable assembly of hook protein subunits, much as another flagellar protein, FliD, does for the flagellin subunits of the filament. However, whereas FliD is associated with the filament tip indefinitely, FlgD is only transiently associated with the hook tip; i.e., it acts as a scaffolding protein. When FlgD was added to the culture medium of a flgD mutant, cells gained motility; thus, although the hook cap is normally added endogenously, it can be added exogenously. When culture media were analyzed for the presence of hook protein, it was found only with the flgD mutant and, in smaller amounts, the fliK (polyhook) mutant. Thus, although FlgD is needed for assembly of hook protein, it is not needed for its export.  相似文献   

9.
10.
We present a mathematical model for the growth and length regulation of the hook component of the flagellar motor of Salmonella typhimurium. Under the assumption that the molecular constituents are translocated into the nascent filament by an ATP-ase and then move by molecular diffusion to the growing end, where they polymerize into the growing tube, we find that there is a detectable transition from secretion limited growth to diffusion limited growth. We propose that this transition can be detected by the secretant FliK, allowing FliK to interact with FlhB thereby changing the secretion target of the type III secretion machinery and terminating the growth of the hook.  相似文献   

11.
12.
Nine temperature-sensitive nonflagellate mutants defective in flaFV were isolated from a strain of Salmonella typhimurium. Among them three mutants were found to produce flagella with abnormally shaped (either straight or irregularly curved) hooks at the permissive temperature. Two mutations that rendered hooks straight were located in one of the eight segments of flaFV defined by deletion mapping. The mutation that rendered hooks irregularly curved was located in a different segment. An flaR mutation was introduced into the latter mutant. At the permissive temperature, the resulting double mutant produced polyhooks whose wavelength and amplitude were both exceedingly reduced. These polyhook structures were more thermolabile than those of the flaFV+ strain. Hook protein of the former strain was shown to have a slightly positive electric charge compared with that of the latter. From these results and other available information, it is inferred that flaFV is the structural gene for the hook protein in Salmonella.  相似文献   

13.
We present a mathematical model for the growth and length regulation of the filament of the flagellar motor of Salmonella Typhimurium. Under the assumption that the molecular constituents are translocated into the nascent filament by an ATPase and then move by molecular diffusion to the growing end, we find a monotonically decreasing relationship between the speed and the velocity of growth that is inversely proportional to length for a large length. This gives qualitative but not quantitative agreement with data of the velocity of growth. We also propose that the length of filaments is “measured” by the rate of secretion of the σ28-antifactor FlgM, using negative feedback, and present a mathematical model of this regulatory network. The combination of this regulatory network with the length-dependent rate of growth enable the bacterium to detect length shortening and regrow severed flagellar filaments.  相似文献   

14.
Transport of flagellar structural proteins beyond the cytoplasmic membrane is accomplished by a type III secretory pathway [flagellar type III secretion system (fTTSS)]. The mechanism of substrate recognition by the fTTSS is still enigmatic. Using the hook scaffolding protein FlgD of Escherichia coli as a model substrate, it is demonstrated that the export signal is contained within the N-terminal 71 amino acids of FlgD. Analysis of frame-shift mutations and alterations of the nucleotide sequence suggest a proteinaceous nature of the signal. Furthermore, the physicochemical properties of the first about eight amino acids are crucial for export.  相似文献   

15.
The many genes involved in flagellar structure and function in Escherichia coli and Salmonella typhimurium are located in three major clusters on the chromosome: flagellar regions I, II and III. We have found that region III does not consist of a contiguous set of flagellar genes, as was thought, but that in E. coli there is almost 7 kb of DNA between the filament cap gene, fliD, and the next known flagellar gene, fliE; a similar situation occurs in S. typhimurium. Most of this DNA is unrelated to flagellar function, since a mutant in which 5.4 kb of it had been deleted remained fully motile and chemotactic as judged by swarming on semi-solid agar. We have therefore subdivided flagellar region III into two regions, IIIa and IIIb. The known genes in region IIIa are fliABCD, all of which are involved in filament structure and assembly, while region IIIb contains genes fliEFGHIJKLMNOPQR, all of which are related to formation of the hook (basal-body)-complex or to even earlier assembly events. We have found that fliD, the last known gene in region IIIa, is immediately followed by two additional genes, both necessary for flagellation, which we have designated fliS and fliT. They encode small proteins with deduced molecular masses of about 15 kDa and 14 kDa, respectively. The functions of FliS and FliT remain to be determined, but they do not appear to be members of the axial family of structural proteins to which FliD belongs.  相似文献   

16.
17.
The galactose binding protein implicated in transport and in chemotaxis has been purified to homogeneity from the shock fluids of Salmonella typhimurium and Escherichia coli. Both proteins are monomers of molecular weight 33 000 and exhibit cross-reactivity with antibody. The Salmonella galactose receptor showed binding of 1 mol of [14C]galactose or 1 mol of [14C]glucose at saturation. The dissociation constants were 0.38 and 0.17 muM, respectively. In light of the previously published report that the E. coli protein contains two binding sites with two different affinities, the binding characteristics of this protein were reexamined. Using highly purified radiolabeled substrate and homogeneous protein, a single binding site and single binding affinity were seen galactose (KD = 0.48 muM) or for glucose (KD = 0.21 muM). The competition between glucose and galactose for the same site is intriguing in view of the competition between ribose and galactose at the receptor level.  相似文献   

18.
Diaminopropionate ammonia-lyase gene from Escherichia coli and Salmonella typhimurium was cloned and the overexpressed enzymes were purified to homogeneity. The k(cat) values, determined for the recombinant enzymes with DL-DAP, D-serine, and L-serine as substrates, showed that the enzyme from S. typhimurium was more active than that from E. coli and the K(m) values were found to be similar. The purified enzymes had an absorption maximum (lambda(max)) at 412 nm, typical of PLP dependent enzymes. A red shift in lambda(max) was observed immediately after the addition of 10mM DL-DAP, which returned to the original lambda(max) of 412 nm in about 4 min. This red shift might reflect the formation of an external aldimine and/or other transient intermediates of the reaction. The apoenzyme of E. coli and S. typhimurium prepared by treatment with L-cysteine could be partially (60%) reconstituted by the addition of PLP. The holo, apo, and the reconstituted enzymes were shown to be present as homo dimers by size exclusion chromatography.  相似文献   

19.
A periplasmic protein essential for the function of the oligopeptide transport system of Salmonella typhimurium was identified. This protein, encoded by the oppA gene, is one of the most abundant proteins in the periplasm and, with an apparent molecular weight of 52,000, is considerably larger than any other known periplasmic transport component. A similarly abundant periplasmic protein forms part of the oligopeptide transport system of Escherichia coli.  相似文献   

20.
envM genes of Salmonella typhimurium and Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Conjugation and bacteriophage P1 transduction experiments in Escherichia coli showed that resistance to the antibacterial compound diazaborine is caused by an allelic form of the envM gene. The envM gene from Salmonella typhimurium was cloned and sequenced. It codes for a 27,765-dalton protein. The plasmids carrying this DNA complemented a conditionally lethal envM mutant of E. coli. Recombinant plasmids containing gene envM from a diazaborine-resistant S. typhimurium strain conferred the drug resistance phenotype to susceptible E. coli cells. A guanine-to-adenine exchange in the envM gene changing a Gly codon to a Ser codon was shown to be responsible for the resistance character. Upstream of envM a small gene coding for a 10,445-dalton protein was identified. Incubating a temperature-sensitive E. coli envM mutant at the nonpermissive temperature caused effects on the cells similar to those caused by treatment with diazaborine, i.e., inhibition of fatty acid, phospholipid, and lipopolysaccharide biosynthesis, induction of a 28,000-dalton inner membrane protein, and change in the ratio of the porins OmpC and OmpF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号