共查询到20条相似文献,搜索用时 15 毫秒
1.
The electroluminescence induced by external electric fields in blebs prepared from chloroplasts consists of two kinetically different phases, rapid (R) and slow (S), which were shown to be linked to Photosystem I (PS I) and Photosystem II (PS II) activities, respectively (Symons, M., Korenstein, R. and Malkin, S. (1985) Biochim. Biophys. Acta 806, 305–310). In this report we describe conditions involving heat treatment of broken chloroplasts, which make it possible to observe R phase electroluminescence essentially devoid of any contribution by the S phase. This allowed the precise measurement of the emission spectrum of PS I electroluminescence. The emission spectrum of PS II electroluminescence was obtained using regular broken chloroplasts, which show only S-type emission. The latter emission spectrum is identical to the one obtained for ordinary prompt fluorescence, peaking at 685 nm with a bandwidth of about 25 nm. The PS I emission spectrum is symmetric around 705 nm and is much broader, about 60 nm. 相似文献
2.
The reduction rate of oxidized reaction center chlorophyll of Photosystem I after laser-flash excitation at 25 K has been determined for D-144 subchloroplast fragments and chloroplasts. A maximum of 40% of Photosystem I reaction centers undergo irreversible charge separation (P-700, Cluster A: P-700+, Cluster A?) at 25 K, a percentage which is independent of laser-flash intensity. The remaining reaction centers in chloroplasts and D-144 fragments undergo reversible charge separation with biphasic recombination. Similar amplitudes and time constants (chloroplasts, 49 μs (61%); D-144 fragments, 90 μs (67%)) were obtained for the fast component, while the slower component differed considerably in time (chloroplasts, 2.9 ms; D-144 fragments, 170 ms). It is known that Fe-S Cluster A is photoreduced in less than 1 ms at 25 K. Data obtained support a model for Photosystem I involving a single intermediate in the decay path between the reduced primary electron acceptor (A?1) and P-700+ and a second intermediate in the decay path between a reduced secondary electron acceptor and P-700+. Dual laser-flash experiments to determine rate constants for these processes are included. 相似文献
3.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1. 相似文献
4.
A model is presented describing the relationship between chlorophyll fluorescence quenching and photoinhibition of Photosystem (PS) II-dependent electron transport in chloroplasts. The model is based on the hypothesis that excess light creates a population of inhibited PS II units in the thylakoids. Those units are supposed to posses photochemically inactive reaction centers which convert excitation energy to heat and thereby quench variable fluorescence. If predominant photoinhibition of PS II and cooperativity in energy transfer between inhibited and active units are presumed, a quasi-linear correlation between PS II activity and the ratio of variable to maximum fluorescence, FVFM, is obtained. However, the simulation does not result in an inherent linearity of the relationship between quantum yield of PS II and FVFM ratio. The model is used to fit experimental data on photoinhibited isolated chloroplasts. Results are discussed in view of current hypotheses of photoinhibition.Abbreviations FM
maximum total fluorescence
- F0
initial fluorescence
- FV
maximum variable fluorescence
- PS
Photosystem
- QA, QB
primary and secondary electron acceptors of Photosystem II 相似文献
5.
The functional role of a chlorophyll complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll complex. Experiments involving reconstitution of the chlorophyll complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll complex functions as a light-harvesting antenna in PS I. 相似文献
6.
Photosystem I is an integral component of the thylakoid membrane which catalyzes the photoreduction of ferredoxin using plastocyanin or cytochrome c as electron donor. In higher plants, the photosystem I complex is composed of eight protein subunits, chlorophyll a, carotenoids, phylloquinone and bound iron sulfur clusters. The molecular biology and biochemistry of the complex are discussed in relation to the structure and function of the individual components. The mechanisms involved in the assembly of the components into a functional complex are also discussed. 相似文献
7.
8.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated
with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent
cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated
with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When
heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components
of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the
slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
In the present study we used three types of Nicotiana tabacum, cv John William's Broad Leaf (the wild type and two mutants, the yellow-green Su/su and the yellow Su/su var. Aurea) in order to correlate functional properties of Photosystem II and Photosystem I with the structural organization of their chloroplasts. The effective absorption cross-section of Photosystem II and Photosystem I centers was measured by means of the rate constant of their photoconversion under light-limiting conditions. In agreement with earlier results (Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60, 150–156) the photosynthetic unit size for both System II and System I in the two mutants was considerably smaller as compared to the wild type. We observed biphasic kinetics in the photoconversion of System II in all three types of N. tabacum. However, the photoconversion of System I occurred with monophasic and exponential kinetics. Under our experimental conditions, the effective cross-section of Photosystem I was comparable to that of the fast System II component (α centers). The relative amplitude of the slow System II component (β centers) varied between 30% in the wild type to 70% in the Su/su var. Aurea mutant. The increased fraction of β centers is correlated with the decreased fraction of appressed photosynthetic membranes in the chloroplasts of the two mutants. As a working hypothesis, it is suggested that β centers are located on photosynthetic membranes directly exposed to the stroma medium. 相似文献
10.
Zdenko Gardian Ladislav Bumba Adam Schrofel Jana Nebesarova Frantisek Vacha 《BBA》2007,1767(6):725-731
Structure and organisation of Photosystem I and Photosystem II isolated from red alga Cyanidium caldarium was determined by electron microscopy and single particle image analysis. The overall structure of Photosystem II was found to be similar to that known from cyanobacteria. The location of additional 20 kDa (PsbQ′) extrinsic protein that forms part of the oxygen evolving complex was suggested to be in the vicinity of cytochrome c-550 (PsbV) and the 12 kDa (PsbU) protein. Photosystem I was determined as a monomeric unit consisting of PsaA/B core complex with varying amounts of antenna subunits attached. The number of these subunits was seen to be dependent on the light conditions used during cell cultivation. The role of PsaH and PsaG proteins of Photosystem I in trimerisation and antennae complexes binding is discussed. 相似文献
11.
12.
Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320–330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution in the presence of DCBQ or DMBQ support the conclusion that inactive Photosystem II complexes have a functional water oxidation system.Abbreviations DCBQ
2,6-dichloro-p-benzoquinone
- DMBQ
2,5-dimethyl-p-benzoquinone
- Fo
initial fluorescence level using dark-adapted thylakoids
- Inactive reaction centers
reaction centers inactive in plastoquinone reduction
- PS II
Photosystem II
- QA
primary quinone acceptor of Photosystem II
- QB
secondary quinone acceptor of Photosystem II
Department of Plant Biology, University of IllinoisDepartment of Physiology & Biophysics, University of Illinois 相似文献
13.
Proteolytic enzyme (trypsin) was used to structurally alter the RCs isolated from plant and bacterium as a way of probing the relation between structure (chromophore-apoprotein interactions) and function (photochemical activity). It was found that neither spectral characteristics (absorption spectrum, the 4th derivative of absorption spectrum) nor photochemical activity (pheophytine photoreduction, P680 photooxidation, etc.) were changed dramatically in D1/D2/cytochrom b
559 PS 2 reaction center complex digested with trypsin. The PS 2 RC treated with trypsin migrates by one green band during electrophoresis with dodecylmaltoside. The peptides with a molecular mass higher than 3–4 kDa were not separated from PS 2 RC. These data indicate that digestion of D1 and D2 proteins does not disturb yet the conformation of peptides or their interactions in so-called core of RC and the native state of pigments. In contrast to that, the RC from Rhodopseudomonas viridis treated with enzyme has changed absorption spectrum and lost photochemical activity. The stability of the bacterial RC increased after exchange of LDAO by dodecylmaltoside.Abbreviations Chl
chlorophyll a
- Cyt
cytochrome
- DPC
diphenylcarbazide
- Dodecylmaltoside
dodecyl--D-maltoside
- LDAO
lauryldimethylamino oxide
- Pheo
pheophytine
- PS 2
Photosystem 2
- RC
reaction center
- SiMo
silicomolybdate
- SD
sodium dodecyl sulfate 相似文献
14.
Introduction of a [4Fe-4S (S-cys)4]+1,+2 iron-sulfur center into a four-alpha helix protein using design parameters from the domain of the Fx cluster in the Photosystem I reaction center. 下载免费PDF全文
We describe the insertion of an iron-sulfur center into a designed four alpha-helix model protein. The model protein was re-engineered by introducing four cysteine ligands required for the coordination of the mulinucleate cluster into positions in the main-chain directly analogous to the domain predicted to ligand the interpeptide [4Fe-4S (S-cys)4] cluster, Fx, from PsaA and PsaB of the Photosystem I reaction center. This was achieved by inserting the sequence, CDGPGRGGTC, which is conserved in PsaA and PsaB, into interhelical loops 1 and 3 of the four alpha-helix model. The holoprotein was characterized spectroscopically after insertion of the iron-sulfur center in vitro. EPR spectra confirmed the cluster is a [4Fe-4S] type, indicating that the cysteine thiolate ligands were positioned as designed. The midpoint potential of the iron-sulfur center in the model holoprotein was determined via redox titration and shown to be -422 mV (pH 8.3, n = 1). The results support proposals advanced for the structure of the domain of the [4Fe-4S] Fx cluster in Photosystem I based upon sequence predictions and molecular modeling. We suggest that the lower potential of the Fx cluster is most likely due to factors in the protein environment of Fx rather than the identity of the residues proximal to the coordinating ligands. 相似文献
15.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids
or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation
with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately
20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming
of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation.
The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of
QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to
prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence
quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching
occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift
for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and
near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately
680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism.
These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the
fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the
formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge
accumulation on a non-pigment molecule of the PS II complex.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
The Photosystem I reaction centre contains two groups of iron-sulphur centres: Fe-SA and Fe-SB with redox potentials between ?510 and ?590 mV, and Fe-SX with redox potential about ?700 mV. Spin quantitation (Heathcote, P., Williams-Smith, D.L. and Evans, M.C.W. (1978) Biochem. J. 170, 373–378) and Mössbauer spectroscopy (Evans, E.H., Dickson, D.P.E., Johnson, C.E., Rush, J.D. and Evans, M.C.W. (1981) Eur. J. Biochem. 118, 81–84) did not show unequivocally whether Fe-SX has one or two centres. Experiments are described which support the proposal that Fe-SX has two centres. Fe-SX can be photoreduced irreversibly by 210 K illumination of dithionite-reduced samples or reversibly by 7.5 K illumination of these samples. The amplitude of the Fe-SX signal reversibly induced by illumination at 7.5 K is never more than 50% of the amplitude of the signal when Fe-SX is prereduced by room temperature illumination or by 210 K illumination. Approx. half of the Fe-SX is rapidly reduced by 210 K illumination, the remainder more slowly. The extent of reversible Fe-SX reduction and P-700 photooxidation is little affected by the fast reduction of about half of the Fe-SX. Subsequent reduction of the remaining Fe-SX is paralleled by loss of the reversible photoreaction. 相似文献
17.
Photosystem I reaction centers from maize bundle-sheath and mesophyll chloroplasts lack subunit III 总被引:1,自引:0,他引:1
Photosystem I reaction centers were isolated from mesophyll and bundle-sheath chloroplasts of the C4 maize plant. Both preparations were found to be free of chlorophyll b and to have the same spectral properties and chlorophyll/P700 ratio as photosystem I reaction centers isolated from C3 plants. Photosystem I reaction centers from both mesophyll and bundle sheath were found to consist of six subunits with apparent molecular masses of about 70 kDa, 20 kDa, 17 kDa, 16 kDa, 10 kDa and 8 kDa, corresponding to photosystem I reaction center subunits I, II, IV, V, VI and VII of spinach, as tested by their immunological cross-reactivity with antibody raised against the respective spinach subunits. No cross-reactivity was found with antibodies raised against subunit III of spinach, either in whole thylakoids or purified reaction centers of both bundle-sheath and mesophyll chloroplasts. It is concluded that photosystem I reaction centers of bundle-sheath and mesophyll thylakoids of maize are identical and lack the polypeptide corresponding to subunit III present in all C3 plants so far tested. 相似文献
18.
A newly purified Photosystem (PS) I particle is described, with still active iron-sulfur acceptors: A, B and X. Apart from the apoprotein of P700, 3 other main polypeptides of this particle are located at 20, 17 and 10 kDa, and two minor ones are detectable at 16.5 and 8 kDa. Both in vivo 35S labeling and carboxymethylation with iodo[14C]acetate show that most of the cysteine residues are located in the 8-kDa band. The amino acid composition of this band reveals important common features with small iron-sulfur proteins of the ferredoxin type. 相似文献
19.
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.This article contains online-only supplementary material.Reviewing Editor: Dr. W. Ford Doolittle 相似文献
20.
PSI-G is an 11 kDa subunit of PSI in photosynthetic eukaryotes. Arabidopsis thaliana plants devoid of PSI-G have a decreased PSI content and an increased activity of NADP+ photoreduction in vitro but otherwise no obvious phenotype [P.E. Jensen, L. Rosgaard, J. Knoetzel, H.V. Scheller, Photosystem I activity is increased in the absence of the PSI-G subunit. J. Biol. Chem. 277, (2002) 2798-2803.]. To investigate the biochemical basis for the increased activity, the kinetic parameters of the reaction between PSI and plastocyanin were determined. PSI-G clearly plays a role in the affinity for plastocyanin since the dissociation constant (KD) is only 12 μM in the absence of PSI-G compared to 32 μM for the wild type. On the physiological level, plants devoid of PSI-G have a more reduced QA. This indicates that the decreased PSI content is due to unstable PSI rather than an adaptation to the increased activity. In agreement with this indication of decreased stability, plants devoid of PSI-G were found to be more photoinhibited both at low temperature and after high light treatment. The decreased PSI stability was confirmed in vitro by measuring PSI activity after illumination of a thylakoid suspension which clearly showed a faster decrease in PSI activity in the thylakoids lacking PSI-G. Light response of the P700 redox state in vivo showed that in the absence of PSI-G, P700 is more reduced at low light intensities. We conclude that PSI-G is involved in the binding dynamics of plastocyanin to PSI and that PSI-G is important for the stability of the PSI complex. 相似文献