首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract— C6 glial cells in culture were utilized to study the regulation of the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and the synthesis of fatty acids and sterols. Regulation of these phenomena by lipid was demonstrated by the following observations. First, removal of serum from the culture medium was accompanied over the next five days by 2–3-fold increases in the lipogenic enzymatic activities and in 5–15-fold increases in rates of incorporation of acetate into fatty acids and sterols. Second, cells grown in delipidated serum exhibited approx 2-fold higher levels of activity of the lipogenic enzymes and 5–10-fold higher rates of synthesis of fatty acids and sterols than cells grown in normal calf serum. Third, cells grown in serum-free medium supplemented with concentrations of fatty acid comparable to those present in medium supplemented with serum exhibited activities of fatty acid synthetase comparable to those exhibited by cells grown in the serum-supplemented medium. The mechanism of these effects on fatty acid synthetase was shown by immunochemical techniques to involve alterations in content rather than in catalytic efficiency of the enzyme. The changes in content of the synthetase were caused by alterations in enzyme synthesis. In view of morphological and biochemical data suggesting that C6 cells are related to differentiating cells with properties of both astrocytes and oligodendroglia, the present data may indicate that regulation of palmitic acid synthesis by fatty acid or a product thereof occurs in brain during development.  相似文献   

2.
The long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase and of fatty acid and sterol synthesis was studied in C-6 glial cells in culture. When theophylline (10(-3) M) was added to the culture medium of these cells, rates of lipid synthesis from acetate and activities of synthetase and carboxylase became distinctly lower than in cells that were untreated. This effect appeared after approximately 12 h, and after 48 h enzymatic activities were reduced approx. 2-fold and rates of lipid synthesis from acetate 3- to 4-fold. The likelihood that the decrease in fatty acid synthesis from acetate was caused by the decrease in activities of fatty acid synthetase and acetyl-CoA carboxylase was established by several observations. These indicated that the locus of the effect probably did not reside at the level of acetate uptake into the cell, alterations in acetate pool sizes or conversion of acetate to acetyl-CoA. Moreover, de novo fatty acid synthesis was found to be the predominant pathway in these glial cells, whether treated with theophylline or not. The mechanism of the effect of theophylline on fatty acid synthetase was shown by immunochemical techniques to involve an alteration in content of enzyme rather than in catalytic efficiency. The change in content of fatty acid synthetase was shown by isotopic-immunochemical experiments to involve a decrease in synthesis of the enzyme. The mechanism whereby theophylline leads to a decrease in lipogenesis and in the synthesis of fatty acid synthetase may not be mediated entirely by inhibition of phosphodiesterase and an increase in cyclic AMP levels, because dibutyryl cyclic AMP (10(-3) M) only partially reproduced the effect.  相似文献   

3.
Acetyl-CoA carboxylase and fatty acid synthetase are the two major enzymes involved in the synthesis of fatty acids in animals. The activities of both enzymes are affected by nutritional manipulations. Although acetyl-CoA carboxylase is considered generally to be the rate-limiting step in lipogenesis, there is evidence that suggests that fatty acid synthetase may become rate limiting under certain conditions. The principal support for the view that acetyl-CoA carboxylase is the rate-limiting enzyme for lipogenesis is that the activity of the enzyme is controlled by allosteric effectors that change the catalytic efficiency of the enzyme. Until recently, the only known control of fatty acid synthetase was through changes in rate of enzyme synthesis. Data are reviewed that show that fatty acid synthetase can exist in forms possessing different catalytic activities. Thus fatty acid synthetase appears to be subject to the type of control necessary for an enzyme to serve as a regulator of the rate of a biological process over a short term.  相似文献   

4.
The major objectives of this study were to define the roles of adrenal glucocorticoids and glucagon in the long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase of mammalian adipose tissue and liver. Particular emphasis was given to elucidation of the mechanisms whereby these hormones produce their regulatory effects on enzymatic activity. To dissociate mental manipulation, nutritional conditions were ridgidly controlled in the experiments described. Administration of glucocorticoids to adult rats led to a marked reductionin activities of fatty acid synthetase and carboxylase in adipose in adipose tissue but no change occurred in liver. Adrenalectomy produced an increase in activities of these lipogenic enzymes in adipose tissure, but, again, no change was noted in liver. The decrease in enzymatic activities in adipose tissue with glucocorticoid administration correlated well with a decrease in fatty acid synthesis, determined in vivo by the 3-H2O method. The mechanisms whereby glucocorticoids led to a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the decrease in fatty acid synthetase activity observed in adipose tissue was shown to reflect a decrease in content of enzyme, and not a change in catalytic efficiency. The mechanism underlying the decrease in enzyme content is a decrease in synthesis of the enzyme. The relation of the effects of glucocorticoids to the effects of certain other hormones involved in regulation of lipogenesis was investigated in hypophysectomized and in diabetic animals. Thus, the observation that the glucocorticoid effect on synthetase and carboxylase occurred in adipose tissue of hypophysectomized rats indicated that alterations in levels of other pituitary-regulated hormones were not necessary for the effect. That glucocorticoids play some role in regulation of synthetase and carboxylase in liver, at lease in the diabetic state, was shown by the observation that the low activities of these enzymes in diabetic animals could be restored to normal by adrenalectomy. An even more pronounced restorative effect was apparent in adipose tissue of adrenalectomized, diabetic animals. Administration of glucagon during the refeeding of starved rats resulted in a marked reduction in the induction of fatty acid synthetase, acetyl-CoA carboxylase and in the rate of incorporation of 3-H from 3-H2O into fatty acids in liver, but no change in these parameters occurred in adipose tissue. Administration of theophylline resulted in intermediate reduction in liver. The mechanisms whereby glucagon led tto a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the changes in fatty acid synthetase activity were shown to reflect reductions in content of enzyme. The mechanism underlying these reductions in content is reduced synthesis of enzyme.  相似文献   

5.
Abstract— Cultured glial (C-6) and neuronal (neuroblastoma) cells were utilized to define the role of thiamine in the regulation of fatty acid and cholesterol biosynthesis. Glial cells subjected to thiamine deficiency exhibited rates of fatty acid synthesis that were only 13% of the rates in thiamine-supple-mented cells. The decrease in fatty acid synthetic rate was accompanied by a comparable decrease in the activities of fatty acid synthetase and acetyl-CoA carboxylase, the two critical enzymes in the pathway. Immunochemical techniques demonstrated that the decrease in activity of fatty acid synthetase reflected a decrease in enzyme content and that this change in content was caused by a decrease in enzyme synthesis. The disturbance of fatty acid synthesis was exquisitely sensitive to thiamine–i.e. marked improvement was evident within hours of replenishment with only 0.01 μ/ml of thiamine. Total recovery occurred in 1–2 days. Thiamine-deficient glia also exhibited reduced rates of cholesterol biosynthesis, i.e. 60% of the rates in thiamine-supplemented cells. This effect was accompanied by a comparable reduction in activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting step in cholesterol biosynthesis. Unlike the glial cells, the neuronal cells exhibited either no or only a slight reduction in lipid synthesis under similar conditions of thiamine deficiency. The data have important implications for the genesis of the neuropathology in states of altered thiamine homeostasis and for the mechanisms of regulation of lipid synthesis.  相似文献   

6.
The influence of thyroid hormones on lipid biosynthesis was studied after administration of L-thyroxine to rats for 5 days. Their weights remained the same as those of control animals, despite an approximately 3-fold increment in plasma L-thyroxine and L-triiodothyronine concentrations. The activity of acetyl-CoA carboxylase and fatty acid synthetase as well as incorporation of tritium into fatty acids were depressed significantly in epididymal adipose tissue and enhanced significantly in livers of thyroxine-treated rats. Using antibodies specific against rat liver fatty acid synthetase, it was determined that the changes in activity of this multienzymic complex were due to alterations in amount of enzyme protein. In the presence of optimal concentrations of fatty acids, radioactive sn-glycero-3-phosphate, and co-substrates, total glycerolipid synthesis (defined in this study as the sum of newly formed radioactive mono- and diacyl-sn-glycero-3-phosphate, diglyceride, and triglyceride) was decreased significantly in adipose tissue and increased in liver and heart. Thus, administration of thyroid hormone results in tissue-specific alterations in lipid biosynthesis which, at least in the case of fatty acid synthetase, are due to changes in enzyme protein content.  相似文献   

7.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

8.
1. The effect of nutritional status on fatty acid synthesis in brown adipose tissue was compared with the effect of cold-exposure. Fatty acid synthesis was measured in vivo by 3H2O incorporation into tissue lipids. The activities of acetyl-CoA carboxylase and fatty acid synthetase and the tissue concentrations of malonyl-CoA and citrate were assayed. 2. In brown adipose tissue of control mice, the tissue content of malonyl-CoA was 13 nmol/g wet wt., higher than values reported in other tissues. From the total tissue water content, the minimum possible concentration was estimated to be 30 microM 3. There were parallel changes in fatty acid synthesis, malonyl-CoA content and acetyl-CoA carboxylase activity in response to starvation and re-feeding. 4. There was no correlation between measured rates of fatty acid synthesis and malonyl-CoA content and acetyl-CoA carboxylase activity in acute cold-exposure. The results suggest there is simultaneous fatty acid synthesis and oxidation in brown adipose tissue of cold-exposed mice. This is probably effected not by decreases in the malonyl-CoA content, but by increases in the concentration of free long-chain fatty acyl-CoA or enhanced peroxisomal oxidation, allowing shorter-chain fatty acids to enter the mitochondria independent of carnitine acyltransferase (overt form) activity.  相似文献   

9.
The activities of hepatic acetyl-CoA carboxylase and fatty acid synthetase undergo two distinct types of development in the perinatal chick. The first increase begins prior to hatching, continues after hatching in the starved chick, and is independent of feeding. The second increase is caused by feeding and is reversed by starvation (A. G. Goodridge (1973) J. Biol. Chem.248, 1932–1938). We have purified these enzymes to homogeneity and raised antibodies to them in rabbits. Using immunochemical techniques we have established that the activity changes in both types of development were a function of changes in the concentrations of enzyme proteins. All activity changes were accompanied by similar changes in the relative rates of synthesis of the two enzymes. Regulation of the activities of acetyl-CoA carboxylase and fatty acid synthetase was further characterized in liver cells from 19-day-old embryos maintained in culture in a chemically defined medium. After 3 days in culture in the absence of hormones, the activities of the enzymes increased significantly with respect to the activities of the freshly prepared cells. Addition of either insulin or triiodothyronine alone caused additional small increases. Insulin plus triiodothyronine caused 8- and 15-fold increases in acetyl-CoA carboxylase and fatty acid synthetase, respectively, relative to cells incubated without hormones. In the presence of insulin alone glucagon had no effect on the activity of either enzyme. In the presence of insulin plus triiodothyronine, glucagon inhibited the increase in enzyme activities by about 75%. The results of quantitative immunoprecipitin tests indicated that activity changes caused by the various hormones were functions of changes in the concentrations of the enzyme proteins. The effects of the hormones on enzyme activities were accompanied by comparable or larger changes in the relative rates of synthesis of the enzymes. Under a wide variety of experimental conditions, both in vivo and in culture, the relative rates of synthesis of acetyl-CoA carboxylase and fatty acid synthetase are regulated coordinately. Under some of these conditions, synthesis of malic enzyme also is regulated coordinately with the syntheses of acetyl-CoA carboxylase and fatty acid synthetase. The common intracellular mechanisms underlying the coordinate control remain to be elucidated.  相似文献   

10.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

11.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

12.
13.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

15.
Pigeon liver fatty acid synthetase has been found to catalyze the formation of palmitic acid from malonyl-CoA and NADPH in the absence of acetyl-CoA. Radio-chemical and spectral assays show that the activity of the complex in the absence of acetyl-CoA is about 25–30% of the activity in the presence of this compound. Initial velocities were determined for a series of reactions in which the malonyl-CoA concentration was varied over a range of 5–200 μm at a fixed NADPH concentration of 100μm and vice versa. No inhibitory effects of one substrate over the other were found. However, when the synthesis of fatty acids was studied in the presence of acetyl-CoA, a significant inhibitory effect of malonyl-CoA was observed. It has also been shown that the fatty acid synthetase synthesizes triacetic lactone from malonyl-CoA in the absence of NADPH and acetyl-CoA. No evidence was obtained for the direct decarboxylation of malonyl-CoA to acetyl-CoA in this reaction. Hence it is proposed that decarboxylation of the malonyl moiety bound covalently to 4′-phosphopantetheine occurs to yield acetyl-4′-phosphopantetheine. Further, it is proposed that the acetyl moiety of the latter compound is transferred to the cysteine site of the enzyme complex and that fatty acid synthesis proceeds in the presence of NADPH as proposed by Phillips et al. [Arch. Biochem. Biophys.138, 380 (1970)]. In the absence of NADPH triacetic lactone is formed.  相似文献   

16.
Primary cultures of adult rat hepatocytes were utilized to ascertain the impact of free fatty acids on the insulin plus dexamethasone induction of acetyl-CoA carboxylase. Lipogenesis was induced threefold by the combination of insulin and dexamethasone. The rise in fatty acid synthesis was accompanied by a comparable increase in the rate-determining enzyme acetyl-CoA carboxylase. Dexamethasone was required for the insulin induction of acetyl-CoA carboxylase. Under the permissive action of glucocorticoid, 10(-7) M insulin maximally increased enzyme activity. Half-maximum stimulation occurred with 5 X 10(-9) M insulin. Media containing 0.2 mM palmitate, oleate, linoleate, arachidonate, or docosahexaenoate significantly suppressed the hormonal induction of acetyl-CoA carboxylase. The extent of suppression was only 30-35% and did not vary with chain length or degree of unsaturation. Carboxylase activity was not suppressed further by raising the concentration of linoleate to 0.5 mM; however, 0.5 mM palmitate depleted the cells of ATP and abolished acetyl-CoA carboxylase activity. Therefore, based upon the inhibitory characteristics of the various fatty acids and the lack of a concentration dependency of the fatty acid inhibition, it would appear that fatty acid inhibition of the induction of acetyl-CoA carboxylase activity may not be a direct, physiological regulatory mechanism.  相似文献   

17.
ATP:citrate lyase (ACL) catalyzes the conversion of citrate to acetyl-coenzyme A (CoA) and oxaloacetate and is a key enzyme for lipid accumulation in mammals and oleaginous yeasts and fungi. To investigate whether heterologous ACL genes can be targeted and imported into the plastids of plants, a gene encoding a fusion protein of the rat liver ACL with the transit peptide for the small subunit of ribulose bisphosphate carboxylase was constructed and introduced into the genome of tobacco. This was sufficient to provide import of the heterologous protein into the plastids. In vitro assays of ACL in isolated plastids showed that the enzyme was active and synthesized acetyl-CoA. Overexpression of the rat ACL gene led to up to a 4-fold increase in the total ACL activity; this increased the amount of fatty acids by 16% but did not cause any major change in the fatty acid profile. Therefore, increasing the availability of acetyl-CoA as a substrate for acetyl-CoA carboxylase and subsequent reactions of fatty acid synthetase has a slightly beneficial effect on the overall rate of lipid synthesis in plants.  相似文献   

18.
1. Mammary-tissue biopsies were obtained from multiparous cows at 30 and 7 days pre partum and 7 and 40 days post partum. Investigations of the effect of lactogenesis on fatty acid and lactose synthesis involved measurements of biosynthetic capacity (tissue-slice incubations in vitro) and activities of relevant enzymes. 2. Fatty acid synthesis from acetate increased over 20-fold from 30 days pre partum to 40 days post partum. Changes in the lipogenic capacity of mammary-tissue slices more closely paralleled increases in the activities of acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) than of other enzymes involved in acetate incorporation into fatty acids or in NADPH generation. 3. Lactose biosynthesis by mammary-tissue slices, lactose synthetase activity (EC 2.4.1.22) and alpha-lactalbumin concentration were all negligible at 30 days pre partum but increased 2.5-4-fold between 7 days pre partum and 40 days post partum. Phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose 4-epimerase (EC 5.1.3.2) had substantial activities at 30 days pre partum and increased less dramatically during lactogenesis. 4. Results are consistent with acetyl-CoA carboxylase and perhaps acetyl-CoA synthetase representing the regulatory enzyme(s) in fatty acid synthesis, with lactose synthetase (alpha-lactalbumin) serving a similar function in lactose biosynthesis.  相似文献   

19.
Abstract— Cultured C-6 glia and neuroblastoma were utilized to investigate the relation of rates of fatty acid synthesis (from 3H2O) to levels of cyclic AMP under conditions of short-term and long-term regulation. The data demonstrate a consistent dissociation of alterations in rates of fatty acid synthesis and levels of cyclic AMP. Thus, marked alterations in the rate of fatty acid synthesis occurred when serum or albumin-bound palmitic acid was present in the culture medium, but there were no accompanying alterations in levels of cyclic AMP. Similarly, when high intracellular and/or extracellular levels of cyclic AMP were induced by exposure of the cells to dibutyryl cyclic AMP or isoproterenol, no change in the rate of fatty acid synthesis occurred. Although the data raise serious doubt about an important role for cyclic AMP in the regulation of fatty acid synthesis, they do not rule out such a role. The findings do indicate that any such role must involve alterations in compartmentalization, metabolism or binding of the mononucleotide within the cell.  相似文献   

20.
The levels of hepatic fatty acid synthesizing enzymes, acetyl-CoA carboxylase and fatty acid synthetase, are lowered to about one-tenth of the controls in hypophysectomized animals, whereas the lung enzymes decrease by only 25–30%. Administration of 3,5,3′-l-triiodothyronine to the hypophysectomized animals returns the hepatic and lung enzyme activities to the control values. Optimum levels are achieved at a dose of about 150 μg/100 g body wt and 3–4 days after triiodothyronine administration. The triiodothyronine response can be reduced by 80% with actinomycin-D or cycloheximide but not with hydrocortisone hemisuccinate. Antibody-antigen titrations and measurements of the rate of synthesis of fatty acid synthetase are indicative of increased synthesis of fatty acid synthetase and not of activation of the preexisting inactive species. These measurements provide evidence for the involvement of hormones other than insulin in the control of synthesis of fatty acid synthesizing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号