首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

2.
3.
4.
The rumen epithelium of sheep and goats showed an increase in short circuit current ( Isc) and transepithelial conductance (gt) upon mucosal removal of divalent cations. A divalent-sensitive Isc and gt were present in Na+, K+ or Rb+ buffer, but nearly abolished in mucosal NMDG+ (N-methyl-D-glucamine) buffer. High K buffer, addition of BaCl2 or of ouabain on the serosal side also reduced or abolished the divalent-sensitive Isc. Mucosal Ca2+ was more potent in blocking Isc, but had the same potency as Mg2+ in blocking gt. A prolonged mucosal deprivation of Mg2+ ions increased gt, potential difference and basal as well as the Ca2+-sensitive Isc. Mucosal addition of Mg2+ had a smaller effect on gt after serosal preincubation with Ba. The data suggest that rumen epithelial cells exhibit an apical non-selective cation conductance, which permits the passage of monovalents in the mucosal absence of divalents. The development of a divalent-sensitive Isc in Na buffer requires Na+/K+ pumps and K+ recycling through Ba2+-sensitive K+ conductances on the basolateral side. This Isc is blocked by extracellular Ca2+ and both extracellular and intracellular Mg2+ ions. A prolonged deprivation of mucosal Mg2+ alone seems to affect intracellular Mg2+ in this Mg2+-absorbing tissue.  相似文献   

5.
Divalent cations and electrical properties of cortical cells   总被引:1,自引:0,他引:1  
  相似文献   

6.
Divalent cations in native and reaggregated mycoplasma membranes   总被引:1,自引:5,他引:1       下载免费PDF全文
The Mg(2+) content of membranes of several Mycoplasma and Acholeplasma species varied between 0.88 and 1.98 mug of Mg(2+) per mg of protein, depending on the species and on growth conditions. Ca(2+) could be detected only when it was added to the growth medium. The Mg(2+) content of isolated A. laidlawii membranes could be increased almost threefold by dialysis against 20 mm Mg(2+), whereas aggregated A. laidlawii membranes contained about six to eight times more Mg(2+) per mg of protein than the native membranes. This was taken to indicate that the molecular organization of the lipid and protein in the reaggregated membranes differs from that of the native membranes. Between 60 and 83% of the Mg(2+) in native and reaggregated A. laidlawii membranes was associated with the lipid fraction extracted with chloroform-methanol. The removal of over 80% of membrane protein by Pronase digestion did not release any significant amount of Mg(2+). Hence, most of the divalent cation appears to be bound to membrane lipids, most probably to phospholipids. Ethylenediaminetetraacetic acid released the bulk of Mg(2+) bound to the native and reaggregated A. laidlawii membranes, except for about 0.5 mug of Mg(2+) per mg of protein which was too tightly bound. Hence, a small but fairly constant amount of Mg(2+) is unavailable for chelation.  相似文献   

7.
8.
The structure of the maize root enables one to determine the experimental specific conductivity of conducting and non-conducting tissues for the longitudinal water transfer. Using the method of Farmer and Berger in Huber and Schmidt's modification, successive differences in orders of magnitude were revealed among the experimental specific conductivities of the tissues of pith, cortex, and those of the area with concentrated xylem. The highest values of specific conductivity (cm3 cm?2 h?1 at 400 mbar per 5 mm distance, at 20° C) were determined in the area with concentrated xylem (mean value 10 018 cm3 cm?2 h?1); in the cortex area values by one order of magnitude lower were obtained (mean value 1 206 cm3 cm?2 h?1); in the pith area by two orders of magnitude lower (mean value 167 cm3 cm?2 h?1). The tissues of the area with concentrated xylem participated in the experimental root conductivity by 72 per cent, cortex tissues by 27 and pith tissues by one per cent. In this paper the individual tissues of maize root are characterized in detail from the anatomical viewpoint and the possible causes of the differences are discussed.  相似文献   

9.
The human malaria parasite, Plasmodium falciparum, induces in the plasma membrane of its host red blood cell new permeation pathways (NPP) that allow the influx of a variety of low molecular weight solutes. In this study we have demonstrated that the NPP confer upon the parasitised erythrocyte a substantial permeability to a range of monovalent organic (quaternary ammonium) cations, the largest having an estimated minimum cross-sectional diameter of 11-12 A. The rate of permeation of these cations showed a marked dependence on the nature of the anion present, increasing with the lyotropicity of the anion. There was no clear relationship between the permeation rate and either the size or the hydrophobicity of these solutes. However, the data were consistent with the rate of permeation being influenced by a combination of these two factors, with the pathways showing a marked preference for the relatively small and hydrophobic phenyltrimethylammonium ion over larger or less hydrophobic solutes. Large quaternary ammonium cations inhibited flux via the NPP, as did long-chain n-alkanols. For both classes of compound the inhibitory potency increased with the size and hydrophobicity of the solute. This study extends the range of solutes known to permeate the NPP of malaria-infected erythrocytes as well as providing some insight into the factors governing the rate of permeation.  相似文献   

10.
Hormone interactions at the root apical meristem   总被引:1,自引:0,他引:1  
Plants exhibit an amazing developmental flexibility. Plant embryogenesis results in the establishment of a simple apical-basal axis represented by apical shoot and basal root meristems. Later, during postembryonic growth, shaping of the plant body continues by the formation and activation of numerous adjacent meristems that give rise to lateral shoot branches, leaves, flowers, or lateral roots. This developmental plasticity reflects an important feature of the plant's life strategy based on the rapid reaction to different environmental stimuli, such as temperature fluctuations, availability of nutrients, light or water and response resulting in modulation of developmental programs. Plant hormones are important endogenous factors for the integration of these environmental inputs and regulation of plant development. After a period of studies focused primarily on single hormonal pathways that enabled us to understand the hormone perception and signal transduction mechanisms, it became obvious that the developmental output mediated by a single hormonal pathway is largely modified through a whole network of interactions with other hormonal pathways. In this review, we will summarize recent knowledge on hormonal networks that regulate the development and growth of root with focus on the hormonal interactions that shape the root apical meristem.  相似文献   

11.
Within the root meristem of flowering plants is a group of mitotically inactive cells designated the quiescent center (QC). Recent work links the quiescent state to high levels of the growth regulator auxin that accumulates in the QC via polar transport. This in turn results in elevated levels of the enzyme ascorbic acid oxidase (AAO), resulting in a reduction of ascorbic acid (AA) within the QC and mitotic quiescence. We present evidence for additional interactions between auxin, AAO, and AA, and report that, in vitro, AAO oxidatively decarboxylates auxin, suggesting a mechanism for regulating auxin levels within the QC. We also report that oxidative decarboxylation occurs at the root tip and that an intact root cap must be present for this metabolic event to occur. Finally, we consider how interaction between auxin and AAO may influence root development by regulating the formation of the QC.  相似文献   

12.
Transmitter release from frog motor terminals was studied in the presence of very low concentrations of tetrodotoxin (TTX, 4.10(-10)--6.10(-9) g/ml). TTX reversibly reduced the amplitude of the end-plate potential (epp), while leaving the amplitude distribution to follow Poisson's law. The effects of a number of divalent cations were studied in the presence of TTX. It was found that after the addition of TTX there was an increase in the constant of dissociation of calcium and strontium from a hypothetical membrane "release site," while the dissociation constants of magnesium and manganese remained unaltered. It is concluded that the release site is probably intracellular and that a reduced presynaptic spike amplitude, as well as magnesium and manganese ions, decrease the access of calcium and strontium to the site.  相似文献   

13.
The divalent cations Mg2+, Mn2+, Zn2+, Ca2+, and Ni2+ were found to protect against proteolysis a form of GroEL (ox-GroEL) prepared by exposing GroEL for 16 h to 6 mM hydrogen peroxide (H2O2). K+ and other monovalent cations did not have any effect. Divalent cations also induced a conformational change of ox-GroEL that led to the decrease of its large exposed hydrophobic surfaces (exposed with H2O2). Ox-GroEL incubated with a divalent cation behaved like N-GroEL in that it could transiently interact with H2O2-inactivated rhodanese (ox-rhodanese), whereas ox-GroEL alone could strongly interact with ox-rhodanese. Although, ox-GroEL incubated with a divalent cation could not recover the ATPase activity (66%) lost with H2O2, it could facilitate the reactivation of ox-rhodanese (>86% of active rhodanese recovered), without requiring ATP or the co-chaperonin, GroES. This is the first report to demonstrate a role for the divalent cations on the structure and function of ox-GroEL.  相似文献   

14.
Post-embryonic root growth relies on the proliferative activity of the root apical meristem (RAM), consisting, in part, of cells with juvenile characteristics (stem cells). It is generally, but erroneously held that the RAM indefinitely produces new cells throughout the lifespan of a plant, resulting in indeterminate root growth. On the contrary, convincing data, mainly from the lab of Thomas L. Rost, show in all species analyzed so far, including Arabidopsis, that RAM organization changes over time in parallel with both a cessation of the production of new cells, and a consequent reduction in root growth, even under optimal conditions. In addition, RAM organization evolved to become highly plastic and dynamic in response to environmental triggers (e.g. water and nutrient availability, pollutants). Under unfavourable conditions, the RAM is rapidly reorganized, and, as a result of the cessation of new cell production at the root tip, root growth is altered, and lateral root production is enhanced, thus providing the plant additional strategies to overcome the stress. It is now becoming increasingly clear that this environment-responsive developmental plasticity is linked to reactive oxygen/nitrogen species, antioxidants, and related enzymes, which form part of a complex signalling module specifically operating in the regulation of RAM functioning, in strict relationship with hormonal control of root development exerted by auxin, gibberellins and cytokinins. In turn, such redox/hormone crosstalk regulates gene expression.  相似文献   

15.
The changes in leaf dimensions, transverse and longitudinal gradients in stomatal density and the total number of stomata under the influence of root hypoxia were followed. In spite of considerably reduced leaf area following hypoxia the total number of stomata per leaf was not changed significantly. The resulting increase in stomatal density was not uniform being the most prominent in the basal part of the leaf where the distances between stomata and between rows of stomata became shorter.  相似文献   

16.
Elevated concentrations of intracellular calcium in erythrocytes increase membrane order and susceptibility to secretory phospholipase A2. We hypothesize that calcium aids the formation of domains of ordered lipids within erythrocyte membranes by interacting directly with the inner leaflet of the cell membrane. The interface of these domains with regions of more fluid lipids may create an environment with weakened neighbor-neighbor interactions that would facilitate phospholipid migration into the active site of bound secretory phospholipase A2. This hypothesis was investigated by determining the effects of seven other divalent ions on erythrocyte membrane properties. Changes in membrane order were assessed with steady-state fluorescence spectroscopy and two-photon microscopy with an environment-sensitive probe, laurdan. Each ion increased apparent membrane order in model membranes and in erythrocytes when introduced with an ionophore, suggesting that direct binding to the inner face of the membrane accounts for the effects of calcium on membrane fluidity. Furthermore, the degree to which ions affected membrane properties correlated with the ionic radius and electronegativity of the ions. Lastly, erythrocytes became more susceptible to enzyme hydrolysis in the presence of elevated intracellular levels of nickel and manganese, but not magnesium. These differences appeared related to the ability of the ions to induce a transition in erythrocyte shape.  相似文献   

17.
18.
19.
The localization of acid phosphatase was studied by Gomori’s newer technique and by azo-coupling methods (α-naphthyl phosphate + fast red ITR or fast garnet GBC; AS or AS D phosphate + fast blue B or fast red violet LB) in the root tips ofVicia faba L. on paraffin sections (fixation with Wolman’s acidified ethanol) and on frozen sections (fixation with Baker’s calcium formol). Analogous results were obtained on the material treated in various ways and using different methods. In the broad bean, the reaction is most intense in the cap. In the meristematic zone, the primary core is more intensely stained than the ground parenchyma of the central cylinder. The phloem and xylem poles are usually strongly positive. Using both types of methods on Wolman fixed paraffin embedded material, essentially the same localization of acid phosphatase was found in the root tips ofRicinus communis L.,Lupinus luteus L.,Sinapis alba L.,Allium cepa L. as in the broad bean. InZea mays L. the rhizodermis and the hypodermic layers of the primary core were found to be most active. On sections of Wolman fixed paraffin embedded broad bean the most intense reaction was observed at pH 4.2–4.8. In the same material, both the azo-coupling and the Gomori reaction is inhibited by 10=2 M NaF, but 10?2 M tartaric acid only inhibits the Gomori reaction.  相似文献   

20.
Determinate root growth and meristem maintenance in angiosperms   总被引:1,自引:0,他引:1  
BACKGROUND: The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). SCOPE AND CONCLUSIONS: This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号