首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

2.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

3.
S C Jamdar 《Enzyme》1981,26(4):215-220
The effect of insulin on adipose tissue triglyceride formation was investigated. Triglyceride formation was measured in the presence of [14C]-glycerol-3-phosphate, palmitate, ATP, CoA and Mg2+50 with adipose tissue homogenate as an enzyme source. Glycerolipid formation by the homogenates prepared from adipose fragments incubated in the presence of insulin for short time (90 min at 37 degrees C) did not appreciably differ from those incubated in the absence of insulin. However, tissue homogenates prepared from rats treated with insulin for 7 or 14 days showed significantly greater rates of glycerolipid formation compared to control animals. Streptozotocin treatment also resulted in increased rates of glycerolipid formation in adipose tissue. These results suggest that a factor common to insulin excess or deficiency may be responsible for the increased rates of adipose glycerolipid formation under these two experimental conditions.  相似文献   

4.
1. The synthesis of long-chain fatty acids de novo was measured in the liver and in regions of adipose tissue in intact normal and genetically obses mice throughout the daily 24h cycle. 2. The total rate of synthesis, as measured by the rate of incorporation of 3H from 3H2O into fatty acid, was highest during the dark period, in liver and adipose tissue of lean or obese mice. 3. The rate of incorporation of 14C from [U-14C]glucose into fatty acid was also followed (in the same mice). The 14C/3H ratios were higher by a factor of 5-20 in parametrial and scapular fat than that in liver. This difference was less marked during the dark period (of maximum fatty acid synthesis). 4. In normal mice, the total rate of fatty acid synthesis in the liver was about twofold greater than that in all adipose tissue regions combined. 5. In obese mice, the rate of fatty acid synthesis was more rapid than in lean mice, in both liver and adipose tissue. Most of the extra lipogenesis occurred in adipose tissue. The extra hepatic fatty acids synthesized in obese mice were located in triglyceride rather than phospholipid. 6. In adipose tissue of normal mice, the rate of fatty acid synthesis was most rapid in the intra-abdominal areas and in brown fat. In obese mice, all regions exhibited rapid rates of fatty acid synthesis. 7. These results shed light on the relative significance of liver and adipose tissue (i.e. the adipose 'organ') in fatty acid synthesis in mice, on the mino importance of glucose in hepatic lipogenesis, and on the alterations in the rate of fatty acid synthesis in genetically obese mice.  相似文献   

5.
6.
R J Martin 《Life sciences》1974,14(8):1447-1453
Genetically obese Zucker rats pair-fed to lean controls were similar in body weight and food intake, however, epididymal fat pads were considerably larger than lean controls. Invivo incorporation of acetate-14C into adipose tissue lipid was not significantly different, however, invivo liver lipogenesis was elevated in the obese rat. Characterization of enzyme profiles in both liver and adipose tissues revealed that enzymes normally associated with lipogenesis were elevated in liver tissue from obese rats. Malic enzyme and citrate cleavage enzyme were both depressed in adipose tissue of obese animals. From these data, it appears that the liver may be prominently involved in the development of excessive blood lipid and enlarged fat cells in the Zucker obese rat.  相似文献   

7.
The influence of feeding rats a high-energy diet for 7 days on fatty acid synthesis in brown adipose tissue, white adipose tissue and liver of the rat was investigated. The incorporation of 3H2O and [U-14C]glucose into fatty acid was measured in vivo. The rats fed the high-energy diets had higher rates of fatty acid synthesis in white adipose tissue than the controls fed on chow, while fatty acid synthesis in brown adipose tissue and liver was either decreased or unchanged relative to that of controls fed on chow. After an oral load of [U-14C]glucose the incorporation of radioactivity into tissue fatty acid was several-fold higher in brown adipose tissue than in white adipose tissue in rats fed on chow. In rats fed the high-energy diets, incorporation of radioactivity into fatty acid in brown adipose tissue was decreased while that into white adipose tissue was either increased (Wistar rats) or unchanged (Lister rats).  相似文献   

8.
1. The relative rates of synthesis of fatty acid synthetase and the pyruvate dehydrogenase complex were measured in adipose tissue in virgin, late pregnant and early lactating rats after injection of l-[2,3-3H]alanine. The relative rate of synthesis of fatty acid synthetase decreased approximately 4-fold between 2 days prepartum and 2 days postpartum. The relative rate of synthesis of the pyruvate dehydrogenase complex did not change. 2. The fractional rate of total adipose tissue protein synthesis was measured by constant infusion with l-[U-14C]tyrosine. Total protein synthesis did not differ in virgin and 2-day lactating rats. The half-life of adipose tissue protein in virginn rats determined by decay of 14C label from protein after injection of NaH14CO3 was 86.9 ± 6.7 h. This is in close agreement witht the half-life (82.5 ± 20 h) calculated from the fractional rate of protein synthesis determined by the constant infusion method.  相似文献   

9.
1. The effects of various treatments to alter either plasma prolactin (bromocryptine administration or removal of litter) or the metabolic activity of the mammary gland (unilateral or complete teat sealing) on the disposal of oral [14C]lipid between 14CO2 production and [14C]lipid accumulation in tissues of lactating rats were studied. In addition, the rates of lipogenesis in vivo were measured in mammary gland, brown and white adipose tissue and liver. 2. Bromocryptine administration lowered plasma prolactin, but did not alter [14C]lipid accumulation in mammary gland or in white and brown adipose tissue. 3. In contrast, complete sealing of teats results in no change in plasma prolactin, but a 90% decrease in [14C]lipid accumulation in mammary gland and a 4-fold increase in white and brown adipose tissue. The rate of lipogenesis in mammary gland was decreased by 95%, but there was no change in the rate in white and brown adipose tissue. Unilateral sealing of teats resulted in a decrease in [14C]lipid accumulation in white adipose tissue. 4. Removal of the litter for 24 h (low prolactin) produced a similar pattern to complete teat sealing, except that there was a 6-fold increase in lipogenesis in white adipose tissue. Re-suckling for 5 h increased plasma prolactin, but did not alter the response seen in litter-removed lactating rats. 5. Changes in lipoprotein lipase activity and in plasma insulin paralleled the reciprocal changes in [14C]lipid accumulation in white and brown adipose tissue and in mammary gland. 6. It is concluded that the plasma insulin is more important than prolactin in regulating lipid deposition in adipose tissue during lactation, and that any effects of prolactin must be indirect.  相似文献   

10.
The activity of lipoprotein lipase (LPL) was studied in interscapilar brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and in the heart of lean and obese adult Zucker rats maintained at 22 degrees C or adapted to cold (10 degrees C). In WAT the specific activity per gram of tissue was lower in obese than in lean rats but the total activity within the tissue was three-fold higher. Cold acclimation did not modify total activity in either lean or obese rats. In BAT, but not in the heart, both specific and total activities were lower in obese than in lean animals. They were enhanced in both tissues following cold acclimation. Six-hour fasting led to a decrease in specific activity in WAT of lean rats but had no effect in obese animals; an increase was observed in BAT and heart of both genotypes. Insulin administration has no effect on activities in WAT in either 22 or 10 degrees C adapted obese rats. Norepinephrine administration stimulates LPL activity in BAT and heart of all groups. It is concluded that the lack of development of obesity previously observed in obese rats following cold acclimation is not due to a decreased capacity of lipid uptake by WAT. It might in part be due to an increased lipid oxidation in BAT.  相似文献   

11.
1. Brown adipocytes were isolated from the interscapular depot of male rats maintained at approx. 21 degrees C. In some experiments parallel studies were made with white adipocytes from the epididymal depot. 2. Insulin increased and noradrenaline decreased [U-14C]glucose incorporation into fatty acids by brown adipocytes. Brown adipocytes differed from white adipocytes in that exogenous fatty acid (palmitate) substantially decreased fatty acid synthesis from glucose. Both noradrenaline and insulin increased lactate + pyruvate formation by brown adipocytes. Brown adipocytes converted a greater proportion of metabolized glucose into lactate + pyruvate and a smaller proportion into fatty acids than did white adipocytes. 3. In brown adipocytes, when fatty acid synthesis from [U-14C]glucose was decreased by noradrenaline or palmitate, incorporation of 3H2O into fatty acids was also decreased to an extent which would not support proposals for extensive recycling into fatty acid synthesis of acetyl-CoA derived from fatty acid oxidation. 4. In the absence of glucose, [U-14C]lactate was a poor substrate for lipogenesis in brown adipocytes, but its use was facilitated by glucose. When brown adipocytes were incubated with 1 mM-lactate + 5 mM-glucose, lactate-derived carbon generally provided at least 50% of the precursor for fatty acid synthesis. 5. Both insulin and noradrenaline increased [U-14C]glucose conversion into CO2 by brown adipocytes (incubated in the presence of lactate) and, in combination, stimulation of glucose oxidation by these two agents showed synergism. Rates of 14CO2 formation from glucose by brown adipocytes were relatively small compared with maximum rates of oxygen consumption by these cells, suggesting that glucose is unlikely to be a major substrate for thermogenesis. 6. Brown adipocytes from 6-week-old rats had considerably lower maximum rates of fatty acid synthesis, relative to cell DNA content, than white adipocytes. By contrast, rates of fatty acid synthesis from 3H2O in vivo were similar in the interscapular and epididymal fat depots. Expressed relative to activities of fatty acid synthase or ATP citrate lyase, however, brown adipocytes synthesized fatty acids as effectively as did white adipocytes. It is suggested that the cells most active in fatty acid synthesis in the brown adipose tissue are not recovered fully in the adipocyte fraction during cell isolation. Differences in rates of fatty acid synthesis between brown and white adipocytes were less apparent at 10 weeks of age.  相似文献   

12.
A study of adipose cell metabolism was made at ages 5, 7, 10, and 14 wk of age in genetically obese Zucker rats. Adipose samples were surgically removed and used for in vitro adipose cell incubations and for characterization of enzyme patterns. Lipogenic capacity from glucose and enzymes normally associated with lipogenesis (malic enzyme, citrate cleavage enzyme and glucose-6-PO4 dehydrogenase) followed the same pattern of development. At 5 wk of age, the adipose cells of obese animals had a greater capacity for fat synthesis than the lean rats. At all other ages lipogenic activity and enzyme levels were either similar or less than the pair-fed lean littermates. Glycerol utilization by isolated fat cells was similar; however, adipose tissue glycerokinase was elevated in obese rats at 14 wk of age. It was concluded that there was no apparent change in specific lipogenic capacity of fat cells from the obese rat when compared to its lean littermate. It was also concluded that increased adipose glycerokinase activity in obese rats represented a secondary shift in metabolism.  相似文献   

13.
Regional variation in adipose tissue lipolysis in lean and obese men.   总被引:7,自引:0,他引:7  
Biopsies of adipose tissue were obtained from two subcutaneous regions (abdominal and femoral) in a sample of 54 men (32 obese and 22 lean subjects). Clonidine-induced antilipolysis in femoral adipose cells was similar in both groups, whereas subcutaneous abdominal adipocytes of obese individuals showed a higher alpha 2-adrenergic response than did subcutaneous abdominal adipose cells from lean subjects. In addition, epinephrine had a biphasic effect in subcutaneous abdominal adipocytes from obese individuals, as it induced antilipolysis at low concentrations, and a net lipolytic response at higher doses. In contrast, the physiological amine promoted lipolysis in subcutaneous abdominal adipose cells of lean subjects. Epinephrine- and clonidine-induced antilipolysis of subcutaneous abdominal adipocytes was positively associated with the level of subcutaneous abdominal fat measured by computed tomography (CT). Finally, men with a high alpha 2-adrenergic response of subcutaneous abdominal fat cells were fatter than those with a low alpha 2-adrenergic component. These results suggest that, in men with a wide range of body fatness, variations in the lipolytic response of subcutaneous abdominal adipose cells to epinephrine appear to involve changes in the functional balance between alpha 2- and beta-adrenoceptors.  相似文献   

14.
15.
Considerable evidence suggests that there are ethnic differences in lipid metabolism between African American and Caucasian women, which may result in increased synthesis of fat in adipose tissue. The purpose of this study was to measure the in vitro rates of [14C]glucose incorporation into the glyceride-glycerol backbone of triglycerides (TG) and diglycerides (DG) in abdominal subcutaneous (SAT) and omental adipose tissue (OAT). Morbidly obese [African American (n = 15): body mass index (BMI) = 45 +/- 2.3; Caucasian (n = 18): BMI = 51 +/- 2.3] and preobese [African American (n = 7): BMI = 27 +/- 1.0; Caucasian (n = 7): BMI = 25 +/- 1.0] women were examined in this study. There were no significant differences in the rates of synthesis of either TG or DG in SAT of either preobese or obese women. On the other hand, both preobese and obese African American women had higher rates of synthesis of TG in OAT compared with their Caucasian counterparts. This increase in TG synthesis in OAT was not due to differences in cell size or rates of reesterification. Thus African American woman have an increased capacity to synthesize TG in OAT compared with Caucasian women, which may contribute to the higher prevalence of obesity in African American women.  相似文献   

16.
Fatty acid synthesis was measured in vivo with 3H2O in interscapular brown adipose tissue of lean and genetically obese (ob/ob) mice. At 26 days of age, before the development of hyperphagia, synthesis in brown adipose tissue was higher in the obese than in the lean mice; synthesis was also elevated in the liver, white adipose tissue and carcass of the obese mice. At 8 weeks of age, when hyperphagia was well established, synthesis remained elevated in all tissues of the obese mice, with the exception of brown adipose tissue. Elevated synthesis rates were not apparent in brown adipose tissue of the obese mice at 14 days of age, nor at 35 days of age. These results demonstrate that brown adipose tissue in ob/ob mice has a transitory hyperlipogenesis at, and just after, weaning on to a low-fat/high-carbohydrate diet. Once hyperphagia has developed, by week 5 of life, brown adipose tissue is the only major lipogenic tissue in the obese mice not to exhibit elevated rates of fatty acid synthesis; this suggests that insulin resistance develops much more rapidly in brown adipose tissue than in other lipogenic tissues of the ob/ob mouse.  相似文献   

17.
Measurements of the tissue accumulation of α-amino[1-14C]isobutyrate [1-14C]AIB) in lean (+/?) and obese (fa/fa) Zucker rats showed an augmented tissue/plasma ratio in the liver of the obese animals. In contrast, brown adipose tissue AIB accumulation was lower in the fa/fa animals. In response to a 24h starvation period AIB accumulation was significantly elevated in the liver and plasma of the lean animals and was unchanged in the liver of the fa/fa animals. The circulating concentration of alanine and branched-chain amino acids was elevated in the fa/fa animals as compared to their lean counterparts. These observations suggest that amino acid uptake is not involved in the impaired muscle development observed in the obese Zucker rat and that the ability of brown adipose tissue for amino acid utilization is decreased in the obese animals suggesting that this may partially explain the impaired thermoregulatory capacity observed in brown adipose tissue of obese Zucker rats.  相似文献   

18.
When fragments of rat or human adipose tissue, or isolated adipocytes, are incubated with [14C]glucose in vitro, [14C]diacylglycerol accumulates rapidly: it comprises 20-50% of newly synthesized (14C-labeled) acylglycerols, compared to less than 1% diacylglycerol accumulated in the bulk lipid store in vivo. The experiments reported in this study were performed to test the possibility that agents that influence the rate of lipolysis might differentially affect the accumulation of di- and triacylglycerol in human adipose tissue, and perhaps account for the discrepancy between the early labeling and the later accumulation of diacyglycerol. Fragments of gluteal subcutaneous adipose tissue obtained from obese men and women were incubated with isoproterenol, epinephrine plus yohimbine, adenosine deaminase, or dibutyryl 3',5'-cyclic adenosine monophosphate to stimulate lipolysis. Tissue fragments were also incubated with clonidine, adenosine, or insulin to inhibit lipolysis. No agent had any effect on the rate of accumulation of newly synthesized triacylglycerol. The effects of these agents on the rate of lipolysis were negatively correlated with their effects on accumulation of newly synthesized diacylglycerol. Newly synthesized diacylglycerol may be preferentially hydrolyzed by hormone sensitive lipase. This increased susceptibility to lipolytic stimulation, compared to newly synthesized triacylglycerol, may account for the minute accumulation of diacylglycerol in adipose tissue in vivo.  相似文献   

19.
The endocrine control of adipose tissue metabolism during pregnancy in sheep has been investigated. The number of insulin receptors of sheep adipocytes was increased during pregnancy. There was no apparent change in the concentration of serum insulin during pregnancy in sheep while the rise in serum progesterone concentration was smaller and more gradual than in rats. Net lipid deposition in adipocytes occurred during the first 55 days of pregnancy, probably due primarily to increased lipoprotein lipase activity. Net deposition of lipid had ceased by mid-pregnancy while by 125 days of pregnancy, the rate of fatty acid synthesis in adipose tissue was decreased and the serum fatty acid concentration had risen, suggesting the onset of net lipid mobilization in the tissue. Results are compared with those from other studies with rats; it would appear that different mechanisms regulate lipid deposition during pregnancy in sheep and rats.  相似文献   

20.
Adipose tissue slices were prepared from middle subcutaneous or perirenal adipose tissue excised from pigs of different ages (and obesity) and incubated with [U-14C]glucose. After incubation, the slices were fixed with osmium tetroxide and separated into diameter ranges of 20--63, 63--102, and 102--153 microgram, respectively. Following determination of cell size and number, the fixed adipocytes were decolorized with H2O2 prior to quantification of glucose conversion to total lipid, glyceride fatty acids, glycerideglycerol, and CO2. Glucose conversion to total lipid or CO2 was unaffected by the presence of purified porcine insulin (0, 10, 100, 1000, and 100,000 microM/ml). Within animals, adipocytes of different sizes were not different with regard to insulin sensitivity. Within a weight (age) group, conversion of glucose to total lipid (insulin present) or to glyceride fatty acids and glyceride-glycerol (insulin absent) per cell was significantly greater in large adipocytes compared to small adipocytes, regardless of the group examined. With increasing weight or age, there was a markedly decreased conversion of glucose to total lipid and glyceride fatty acids among adipocytes of similar size within a cell-size fraction. The diminution in glucose metabolism was greater (as a percentage) in 20--63 microgram adipocytes than for 63--102 or 102--153 microgram adipocytes. However, for all cell-size fractions there was a marked decrease in glucose conversion to fatty acids. Glyceride-glycerol synthesis was impaired in adipocytes from older pigs, but the decrease was less than observed for glyceride fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号