首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.  相似文献   

7.
8.
9.
10.
Lebrun E  Revardel E  Boscheron C  Li R  Gilson E  Fourel G 《Genetics》2001,158(1):167-176
Saccharomyces cerevisiae subtelomeric repeats contain silencing elements such as the core X sequence, which is present at all chromosome ends. When transplaced at HML, core X can enhance the action of a distant silencer without acting as a silencer on its own, thus fulfilling the functional definition of a protosilencer. Here we show that an ACS motif and an Abf1p-binding site participate in the silencing capacity of core X and that their effects are additive. In addition, in a variety of settings, core X was found to bring about substantial gene repression only when a low level of silencing was already detectable in its absence. Adjoining an X-STAR sequence, which naturally abuts core X in subtelomeric regions, did not improve the silencing capacity of core X. We propose that protosilencers play a major role in a variety of silencing phenomena, as is the case for core X, which acts as a silencing relay, prolonging silencing propagation away from telomeres.  相似文献   

11.
12.
In Saccharomyces cerevisiae, telomeric DNA is protected by a nonnucleosomal protein complex, tethered by the protein Rap1. Rif and Sir proteins, which interact with Rap1p, are thought to have further interactions with conventional nucleosomic chromatin to create a repressive structure that protects the chromosome end. We showed by microarray analysis that Rif1p association with the chromosome ends extends to subtelomeric regions many kilobases internal to the terminal telomeric repeats and correlates strongly with the previously determined genomic footprints of Rap1p and the Sir2-4 proteins in these regions. Although the end-protection function of telomeres is essential for genomic stability, telomeric DNA must also be copied by the conventional DNA replication machinery and replenished by telomerase, suggesting that transient remodeling of the telomeric chromatin might result in distinct protein complexes at different stages of the cell cycle. Using chromatin immunoprecipitation, we monitored the association of Rap1p, Rif1p, Rif2p, and the protein component of telomerase, Est2p, with telomeric DNA through the cell cycle. We provide evidence for dynamic remodeling of these components at telomeres.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Silencing at the cryptic mating-type loci HML and HMR of Saccharomyces cerevisiae requires regulatory sites called silencers. Mutations in the Rap1 and Abf1 binding sites of the HMR-E silencer (HMRa-e**) cause the silencer to be nonfunctional, and hence, cause derepression of HMR. Here, we have isolated and characterized mutations in SAS2 as second-site suppressors of the silencing defect of HMRa-e**. Silencing conferred by the removal of SAS2 (sas2Δ) depended upon the integrity of the ARS consensus sequence of the HMR-E silencer, thus arguing for an involvement of the origin recognition complex (ORC). Restoration of silencing by sas2Δ required ORC2 and ORC5, but not SIR1 or RAP1. Furthermore, sas2Δ suppressed the temperature sensitivity, but not the silencing defect of orc2-1 and orc5-1. Moreover, sas2Δ had opposing effects on silencing of HML and HMR. The putative Sas2 protein bears similarities to known protein acetyltransferases. Several models for the role of Sas2 in silencing are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号