首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissemination of vancomycin resistance from hospital to community strains is a serious threat to public health. Our study aimed to provide evidence for transmission of Van A type resistance from the hospital to the community. Wild-type community and hospital associated methicillin resistant Staphylococcus aureus strains were studied in vitro and in a model that mimicked a natural environment to ascertain their ability to acquire and maintain the vancomycin resistance determinant (Van A gene) from vancomycin resistant Enterococcus faecalis. Fitness was assessed and the cost of Van A acquisition and retention was estimated. In vitro mating experiments were carried out using a filter mating technique and a model of a natural water body environment. Transfer of resistance was carried out in two different conditions: restricted and favorable. Transconjugants were confirmed by E test and PCR using specific primer sets. Growth kinetics and fitness measurements were done by spectrometric analysis. Using the in vitro filter mating technique, high transfer frequencies that ranged from 0.7 × 10–3(0.0006) to 3.1 × 10–4(0.00011) were recorded, with the highest transfer frequencies for CA MRSA (thermosensitively homogenous) (0.7 × 10–3), and 1.2 × 10–4 to 2.4 × 10–6 in the model. HA MRSA (homogenous) showed a greater capacity (3.6 × 10–4) to receive the Van A gene, while CA MRSA showed a reduced ability to maintain the gene after serial subcultures. CA and HA thermosensitively heterogeneous MRSA transconjugants exhibited higher growth rates. The present study provides evidence for the enhanced ability of CA and HA MRSA clones to acquire and maintain Van A type resistance.  相似文献   

2.
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32–128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.  相似文献   

3.
Six methicillin-resistant Staphylococcus aureus MRSA strains from two nosocomial infection cases described in a previous study [15], of which two occurred in March and the other four in May, 2005, were found to possess one copy of class 1 integron with aadA2 gene cassette located on chromosomes by Southern hybridization. Polymerase chain reaction (PCR) detection of mecA and pvl, SCCmec typing, multilocus sequence typing (MLST), spaA typing and coa typing were also performed. The results revealed 6 MRSA fell into the ST239-MRSA-III group (clonal complex 8), with the spaA type GKAOMQ and coa type HIJKL, whereas the pvl locus was not detected. DNA fingerprinting analysis by random amplified polymorphic DNA-PCR using three different assays were also performed, and all strains exhibited identical patterns, indicating that they were clonally related and might be mainly due to a specific clone in the hospital. This was the first time, to our knowledge, that class 1 integron-bearing MRSA (I-MRSA), simultaneously carrying two mobile genetic elements was confirmed: class 1 integron and SCCmec.  相似文献   

4.
Antimicrobial peptides (AMPs) have the potential to become valuable antimicrobial drugs in the coming years, since they offer wide spectrum of action, rapid bactericidal activity, and low probability for resistance development in comparison with traditional antibiotics. The search and improvement of methodologies for discovering new AMPs to treat resistant bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are needed for further development of antimicrobial products. In this work, the software Peptide ID 1.0® was used to find new antimicrobial peptide candidates encrypted in proteins, considering the physicochemical parameters characteristics of AMPs such as positive net charge, hydrophobicity, and sequence length, among others. From the selected protein fragments, new AMPs were designed after conservative and semi-conservative modifications and amidation of the C-terminal region. In vitro studies of the antimicrobial activity of the newly designed peptides showed that two peptides, P3-B and P3-C, were active against P. aeruginosa Escherichia coli and A. baumannii with low minimum inhibitory concentrations. Peptide P3-C was also active against K. pneumoniae and S. aureus. Furthermore, bactericidal activity and information on the possible mechanisms of action are described according to the scanning electron microscopy studies.  相似文献   

5.
Staphylococcus aureus is a multidrug-resistant pathogen that not only causes a diverse array of human diseases, but also is able to survive in potentially dry and stressful environments, such as the human nose, on skin and on inanimate surfaces such as clothing and surfaces. This study investigated parameters governing desiccation tolerance of S. aureus and identified several components involved in the process. Initially, the role of environmental parameters such as temperature, growth phase, cell density, desiccation time and protectants in desiccation tolerance were determined. This established a robust model of desiccation tolerance in which S. aureus has the ability to survive on dry plastic surfaces for more than 1,097 days. Using a combination of a random screen and defined mutants, clpX, sigB and yjbH were identified as being required for desiccation tolerance. ClpX is a part of the ATP-dependent ClpXP protease, important for protein turnover, and YjbH has a proposed linked function. SigB is an accessory sigma factor with a role in generalized stress resistance. Understanding the molecular mechanisms that govern desiccation tolerance may determine the break points to be exploited to prevent the spread of this dangerous pathogen in hospitals and communities.  相似文献   

6.
Aminoglycoside resistance in six clinically isolated Staphylococcus aureus was evaluated. Genotypical examination revealed that three isolates (HLGR-10, HLGR-12, and MSSA-21) have aminoglycoside-modifying enzyme (AME) coding genes and another three (GRSA-2, GRSA-4, and GRSA-6) lacked these genes in their genome. Whereas isolates HLGR-10 and HLGR-14 possessed bifunctional AME coding gene aac(6′)-aph(2′′), and aph(3′)-III and showed high-level resistance to gentamycin and streptomycin, MSSA-21 possessed aph(3′)-III and exhibited low resistance to gentamycin, streptomycin, and kanamycin. The remaining three isolates (GRSA-2, GRSA-4, and GRSA-6) exhibited low resistance to all the aminoglycosides because they lack aminoglycoside-modifying enzyme coding genes in their genome. The transmission electron microscopy of the three isolates revealed changes in cell size, shape, and septa formation, supporting the view that the phenomenon of adaptive resistance is operative in these isolates.  相似文献   

7.
In this study, we developed a microplate sandwich analysis of Escherichia coli and Staphylococcus aureus bacterial pathogens based on the interaction of their cell wall carbohydrates with natural receptors called lectins. An immobilized lectin-cell-biotinylated lectin complex was formed in this assay. Here, we studied the binding specificity of several plant lectins to E. coli and S. aureus cells, and pairs characterized by high-affinity interactions were selected for the assay. Wheat germ agglutinin and Ricinus communis agglutinin were used to develop enzyme-linked lectinosorbent assays for E. coli and S. aureus cells with the detection limits of 4 × 106 and 5 × 105 cells/mL, respectively. Comparison of the enzyme-linked immonosorbent assay and the enzyme-linked lectinosorbent assay demonstrated no significant differences in detection limit values for E. coli. Due to the accessibility and universality of lectin reagents, the proposed approach is a promising tool for the control of a wide range of bacterial pathogens.  相似文献   

8.
Thein vitro antimicrobial activity of the marine green algaeUlva lactuca was examined against gram-positive bacteria, gram-negative bacteria, and a fungus. The ethyl-ether extract of algae exhibited a broad-spectrum of antibacterial activity. but not antifungal activity againstCandida albicans. In particular, theU. lactuca extract showed strong activity aganst the bacterium methicillin-resistantStaphylococcus aureus (MRSA). This result confirms the potential use of seaweed extracts as a source of antibacterial compounds or as a health-promoting food for aquaculture.  相似文献   

9.
The in vitro antimicrobial activity of the marine green algae Chaetomorpha aerea was investigated against gram-positive bacteria, gram-negative bacteria, and a fungus. The water-soluble extract of algae was composed of a sulfated (6.3%) galactan with a molecular weight of 1.160 × 106 Da and a global composition close to commercial polysaccharides, such as dextran sulfate or fucoidan. The polysaccharide was composed of 18% arabinose, 24% glucose, and 58% galactose. The re-suspended extracts (methanol, water) exhibited selective antibacterial activities against 3 gram-positive bacteria including Staphylococcus aureus (ATCC 25923). Minimum inhibitory concentration and minimum bactericidal concentration tests showed that the sulfated galactan could be a bactericidal agent for this strain (40 mg/mL). The results of this study confirmed the potential use of the green algae Chaetomorpha aerea as a source of antibacterial compounds.  相似文献   

10.
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.  相似文献   

11.
12.
Among 31 3,4-dihydro-s-triazinobenzimidazole derivatives tested 12 compounds showedin vitro antimicrobial activity against G+ bacteria. Best results were obtained with substances containing naphthyl or halogenated phenyl group on the triazine ring. The tested derivatives had no significantin vitro antimicrobial activity against either the used G species or fungi.  相似文献   

13.
14.
A methicillin-susceptible strain of Staphylococcus aureus (MSSA) showed stepwise adaptation when grown in increasing concentrations of oxacillin, eventually reaching a maximum of 35 μg/ml. The resultant oxacillin resistant mutant strain was stable and did not revert to susceptibility on frequent subculturing. The response of the cells to different concentrations of oxacillin was examined by scanning electron microscopy, which showed that the size of the bacterium increased with increasing concentrations of oxacillin. These changes in cell size were dependent on the concentration of oxacillin and occurred only after addition of non-lethal concentrations. In the presence of lethal concentrations (≥35 μg/ml) that completely inhibited cell growth, the cell sizes were smaller than those of wild-type cells and irregular in shape. This stepwise-adapted methicillin (oxacillin) resistant S. aureus (MRSA) mutant showed a greater acid tolerance response (ATR) to lactic and citric acids than the parent susceptible strain. These data indicates that methicillin resistance alters the morphology and ATR in stepwise-adapted MRSA mutant cells.  相似文献   

15.
The investigation of the recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against Staphylococcus aureus. rBLfA containing N-lobe (amino acid residues 1–333) and inter-lobe region (residues 334–344) was expressed in Pichia pastoris at shaking flask and fermentor level. The recombinant intact bovine lactoferrin (rBLf) and N-lobe (rBLfN) were expressed in the same system as control. The physical–chemical parameters of rBLfA, rBLfN and rBLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than rBLf and rBLfN. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0–3.5, whereas rBLfN lost its iron over the pH range of 7.0–4.0 and iron release from rBLf occurred in the pH range of 5.5–3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5 μmol/L, compared with 12.5 and 25 μmol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.  相似文献   

16.
In this study, we characterized the essentiality of enolase for growth of Staphylococcus aureus in vitro by using a TetR-regulated antisense RNA expression technology. The induced enolase antisense RNA dramatically decreased the production of enolase, which in turn inhibited the growth of S. aureus. In addition, we found that the down-regulation of eno expression can effectively inhibit Triton X-100-induced lysis and alleviate penicillin-caused cell lysis. To further confirm the specific effect of enolase on autolysis, we constructed an enolase over-expression system and demonstrated that the over-expression of enolase enhances both Triton X-100 and penicillin-induced cell lysis without increasing cell growth rate. We also performed hydrolase induced autolysis and zymographic assays and found that enolase had no impact on either bacterial sensitivity to hydrolase or hydrolase activity. Moreover, we found that the down-regulating expression of enolase selectively increased bacterial sensitivity to phosphomycin. Taken together, the above results suggest that the enolase is essential for S. aureus and involved in the process of bacterial autolysis.  相似文献   

17.

Background  

Fibronectin binding proteins A and B (FnBPA and FnBPB) mediate adhesion of S. aureus to fibrinogen, elastin and fibronectin. We previously identified seven different isotypes of FnBPA based on divergence in the fibrinogen- and elastin-binding A domains. The variation created differences in antigenicity while ligand binding functions were retained. Here, FnBPB variation was examined in both human and bovine isolates and compared to that of FnBPA.  相似文献   

18.
19.
Two lipopeptide antibiotics, pelgipeptins C and D, were isolated from Paenibacillus elgii B69 strain. The molecular masses of the two compounds were both determined to be 1,086 Da. Mass-spectrometry, amino acid analysis and NMR spectroscopy indicated that pelgipeptin C was the same compound as BMY-28160, while pelgipeptin D was identified as a new antibiotic of the polypeptin family. These two peptides were active against all the tested microorganisms, including antibiotic-resistant pathogenic bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). Time-kill assays demonstrated that pelgipeptin D exhibited rapid and effective bactericidal action against MRSA at 4×MIC. Based on acute toxicity test, the intraperitoneal LD50 value of pelgipeptin D was slightly higher than that of the structurally related antimicrobial agent polymyxin B. Pelgipeptins are highly potent antibacterial and antifungal agents, particularly against MRSA, and warrant further investigation as possible therapeutic agents for bacteria infections resistant to currently available antibiotics.  相似文献   

20.
The genetic and epidemiological features of four vancomycin-intermediate Staphylococcus aureus (VISA) isolates obtained from a Korean hospital were evaluated in this study. The VISA isolates were genotyped as sequence type (ST) 5-staphylococcal cassette chromosome mec (SCCmec) II variant (n=2) and ST239-SCCmec III (n=2), which were derived from the predominant methicillin-resistant S. aureus (MRSA) clones in Korean hospitals. One VISA isolate was acquired during vancomycin treatment, whereas three VISA isolates were obtained from the patients who had not previously been exposed to glycopeptides. As VISA is likely to arise from the predominant MRSA clones and may then possibly spread between patients, the emergence of VISA should be monitored with great care in hospitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号