首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite element analysis plays an important role in dental implant design. The objective of this study was to show the effect of the overall geometry of dental implants on their biomechanics after implantation. In this study, 12 dental implants, with the same length, diameter and screw design, were simulated from different implant systems. Numerical model of right mandibular incisor bone segment was generated from CT data. The von-Mises stress distributions and the total deformation distributions under vertical/lateral load were compared for each implant by scores ranking method. The implants with cylindrical shapes had highest scores. Results indicated that cylindrical shape represented better geometry over taper implant. This study is helpful in choosing the optimal dental implant for clinical application and also contributes to individual implant design. Our study could also provide reference for choice and modification of dental implant in any other insertion sites and bone qualities.  相似文献   

2.
为了研究冲击波(SW)诱导人骨髓基质细胞(hMSCs)在动物体内成骨作用,根据前期工作结果,应用适宜能量冲击波(10kV,500次)处理体外培养的hMSCs,将SW组和对照组hMSCs与羟基磷灰石(HA)载体复合后体外培养2周,应用扫描电镜(SEM)检测细胞在载体表面的生长情况.将hMSCs-HA载体复合体植入裸鼠皮下,分别于术后4周、8周取材进行组织学、四环素荧光标记、SEM观察、碱性磷酸酶测定、RT-PCR检测骨钙素mRNA表达.结果表明,SW组及对照组细胞与HA载体体外复合后生长良好,且SW组细胞分泌较多的细胞基质;细胞载体复合体植入动物体内后,SW组载体表面有类骨组织形成,而对照组HA载体表面无骨组织形成;SW组与对照组的hMSCs-HA载体复合体碱性磷酸酶表达有显著性差异(P<0.01);SW组hMSCs-HA载体复合体术后4周与8周表达骨钙素mRNA,而对照组则无表达.提示hMSCs经适宜能量冲击波作用后与HA载体复合植入裸鼠体内具有成骨作用,适宜能量的冲击波作为一种新的促进hMSCs成骨分化的方法,可应用于组织工程领域.  相似文献   

3.
Experimental hydroxyapatite cement cranioplasty.   总被引:27,自引:0,他引:27  
Hydroxyapatite cement is a calcium phosphate-based material that when mixed with water forms a dense paste that sets within 15 minutes and isothermically converts in vivo to a microporous hydroxyapatite implant. This cement was used to reconstruct bilateral 2.5-cm-diameter full-thickness critical-sized parietal skull defects in six cats. One side was reconstructed with 100 percent hydroxyapatite cement, and the other with a mixture of 50 percent hydroxyapatite cement and 50 percent ground autogenous bone by weight. These animals were sacrificed at 6 and 12 months after implantation. Positive and negative controls also were prepared. The anatomic contour of the soft tissue overlying all hydroxyapatite cement implants was well maintained, there were no wound infections or structural failures, and the implants were well tolerated histologically. None of the negative (unreconstructed) control defects was completely filled with repair bone, and all positive (methyl methacrylate) controls demonstrated foreign-body giant-cell formation and fibrous encapsulation of the implants. Examination of decalcified and undecalcified sections revealed progressive but variable replacement of the cement by new bone and soft tissue without a change in the shape or volume of the hydroxyapatite cement-reconstructed areas. New bone comprised 77.3 and 64.7 percent of the tissue replacing the hydroxyapatite cement and hydroxyapatite cement-bone implants, respectively. Replacement of the hydroxyapatite cement implants by new bone is postulated to occur by a combination of osteoconduction and implant resorption. These results indicate that further experimental research leading to the possible application of hydroxyapatite cement for full-thickness calvarial defect reconstruction in humans is warranted.  相似文献   

4.
Allogen bones from tissue bank are often used in dentistry although the data analyzing the long-term success in mandible are scarce. This study evaluated by computed tomography scans (CTS) the bone resorption around the implants installed on fresh frozen bone (FFB) previously grafted, after 4 years of occlusal rehabilitation. Six subjects were grafted with blocks in posterior mandible using FFB. After 6 months, 27 implants were placed and after further 4 months the prostheses were delivered. Following 4 years of the final rehabilitation procedures, another CTS was done in order to measure the resorption in periimplant bone crest at the proximal implant surfaces. It was observed a 100 % survival rate of the implants after 4 years of the fixture installation. The marginal bone resorption after 48 months was 2.82 ± 1.63 mm and no statistical significant difference was observed along the region where the implants were fixed when compared with the interimplantar space. In addition there was no significant correlation regarding the length of the implant used and the amount of marginal bone resorption. The conclusion is that grafted areas with FFB are suitable to implant installation in the posterior mandible.  相似文献   

5.
This is a report of an experimental system to study differentiation of bone-resorbing osteoclasts and demonstrates that osteocalcin, an extracellular bone-specific component, is necessary for the recruitment of osteoclast progenitor cells. The subcutaneous implantation of devitalized bone particles (BPs) elicits the recruitment and differentiation of osteoclasts that resorb the BPs. In a previous study, we showed by histomorphometric analysis that BPs that were deficient in osteocalcin were resorbed only 60% as well as normal BPs. In this study, the mechanism of this difference was investigated by measurements of recruitment, differentiation and activity of bone resorbing cells by normal and osteocalcin-deficient BP. Mononuclear cells were attracted to control BPs soon after implantation. In dramatic contrast, cellularity was depressed around osteocalcin-deficient BPs with very few mononuclear cells within the implant on day 5 (35% of control cellularity). In implants of normal BPs, tartrate-resistant acid phosphatase-positive multinucleated cells were evident by day 5; very few appeared in implants of osteocalcin-deplete BPs even by day 12. The amount of tartrate-resistant acid phosphatase activity in homogenates of the osteocalcin-deficient bone particle specimens not only lagged behind controls but never reached the maximum activity of control BP specimens. These data support the hypothesis that osteocalcin may function as a matrix signal in the recruitment and/or activation of cells for bone resorption.  相似文献   

6.
Press-fitting is used to anchor uncemented implants in bone. It relies in part on friction resistance to relative motion at the implant–bone interface to allow bone ingrowth and long-term stability. Frictional shear capacity is related to the interference fit of the implant and the roughness of its surface. It was hypothesised here that a rough implant could generate trabecular bone damage during implantation, which would reduce its stability. A device was constructed to simulate implantation by displacement of angled platens with varying surface finishes (polished, beaded and flaked) onto the surface of an embedded trabecular bone cube, to different nominal interferences. Push-in (implantation) and Pull-out forces were measured and micro-CT scans were made before and after testing to assess permanent bone deformation. Depth of permanent trabecular bone deformation (‘damage’), Pull-out force and Radial force all increased with implantation displacement and with implantation force, for all surface roughnesses. The proposed hypothesis was rejected, since primary stability did not decrease with trabecular bone damage. In fact, Pull-out force linearly increased with push-in force, independently of trabecular bone damage or implant surface. This similar behaviour for the different surfaces might be explained by the compaction of bone into the surfaces during push-in so that Pull-out resistance is governed by bone-on-bone, rather than implant surface-on-bone friction. The data suggest that maximum stability is achieved for the maximum implantation force possible (regardless of trabecular bone damage or surface roughness), but this must be limited to prevent periprosthetic cortical bone fracture, patient damage and component malpositioning.  相似文献   

7.
Algorithmic models have been proposed to explain adaptive behavior of bone to loading; however, these models have not been applied to explain the biomechanics of short dental implants. Purpose of present study was to simulate bone remodeling around single implants of different lengths using mechanoregulatory tissue differentiation model derived from the Stanford theory, using finite elements analysis (FEA) and to validate the theoretical prediction with the clinical findings of crestal bone loss. Loading cycles were applied on 7-, 10-, or 13-mm-long dental implants to simulate daily mastication and bone remodeling was assessed by changes in the strain energy density of bone after a 3, 6, and 12 months of function. Moreover, clinical findings of marginal bone loss in 45 patients rehabilitated with same implant designs used in the simulation (n = 15) were computed to validate the theoretical results. FEA analysis showed that although the bone density values reduced over time in the cortical bone for all groups, bone remodeling was independent of implant length. Clinical data showed a similar pattern of bone resorption compared with the data generated from mathematical analyses, independent of implant length. The results of this study showed that the mechanoregulatory tissue model could be employed in monitoring the morphological changes in bone that is subjected to biomechanical loads. In addition, the implant length did not influence the bone remodeling around single dental implants during the first year of loading.  相似文献   

8.
徐国皓  谷方  孙红丽  李婷  杨建军 《生物磁学》2013,(10):1878-1882
目的:应用三维有限元分析法研究牙种植体过盈植入对种植体-骨界面接触压力的影响。方法:选择直径为3.3 mm的ITI种植体和成人离体下颌骨,模拟种植体植入下颌骨内,过盈量为0.5 mm,建立三维有限元模型,应用ANSYS软件分析种植体-骨界面的应力分布情况。结果:种植体周围骨最大应力为48.796 MPa,应力分布均匀。种植体所受应力主要集中于颈部,最大应力值为87.832 MPa。结论:过盈量为0.5 mm时,种植体-骨界面所产生的应力值在骨组织所能承受的最大应力值范围内,种植体所受到的应力值远远小于钛的屈服强度,从生物力学角度,周围骨所受应力在骨组织能够承受范围,种植体也不会断裂,过盈联结在临床种植时有其可行性。  相似文献   

9.
The fate of secondary biomaterial implants was determined by bio-optical imaging and plate counting, after antibiotic treatment of biomaterials-associated-infection (BAI) and surgical removal of an experimentally infected, primary implant. All primary implants and tissue samples from control mice showed bioluminescence and were culture-positive. In an antibiotic treated group, no bioluminescence was detected and only 20% of all primary implants and no tissue samples were culture-positive. After revision surgery, bioluminescence was detected in all control mice. All the implants and 80% of all tissue samples were culture-positive. In contrast, in the antibiotic treated group, 17% of all secondary implants and 33% of all tissue samples were culture-positive, despite antibiotic treatment. The study illustrates that due to the BAI of a primary implant, the infection risk of biomaterial implants is higher in revision surgery than in primary surgery, emphasizing the need for full clearance of the infection, as well as from surrounding tissues prior to implantation of a secondary implant.  相似文献   

10.
Zou D  He J  Zhang K  Dai J  Zhang W  Wang S  Zhou J  Huang Y  Zhang Z  Jiang X 《PloS one》2012,7(3):e32355
The presence of insufficient bone volume remains a major clinical problem for dental implant placement to restore the oral function. Gene-transduced stem cells provide a promising approach for inducing bone regeneration and enhancing osseointegration in dental implants with tissue engineering technology. Our previous studies have demonstrated that the hypoxia-inducible factor-1α (HIF-1α) promotes osteogenesis in rat bone mesenchymal stem cells (BMSCs). In this study, the function of HIF-1α was validated for the first time in a preclinical large animal canine model in term of its ability to promote new bone formation in defects around implants as well as the osseointegration between tissue-engineered bone and dental implants. A lentiviral vector was constructed with the constitutively active form of HIF-1α (cHIF). The ectopic bone formation was evaluated in nude mice. The therapeutic potential of HIF-1α-overexpressing canine BMSCs in bone repair was evaluated in mesi-implant defects of immediate post-extraction implants in the canine mandible. HIF-1α mediated canine BMSCs significantly promoted new bone formation both subcutaneously and in mesi-implant defects, including increased bone volume, bone mineral density, trabecular thickness, and trabecular bone volume fraction. Furthermore, osseointegration was significantly enhanced by HIF-1α-overexpressing canine BMSCs. This study provides an important experimental evidence in a preclinical large animal model concerning to the potential applications of HIF-1α in promoting new bone formation as well as the osseointegration of immediate implantation for oral function restoration.  相似文献   

11.
Schultes G  Gaggl A  Kärcher H 《Plastic and reconstructive surgery》2002,109(3):916-21; discussion 922-4
Microvascular iliac crest and scapula transplants have been used in reconstruction of the lower jaw following tumor surgery. It has only been with the insertion of dental implants that a satisfactory prosthetic rehabilitation of the patient has been achieved. For this study, a follow-up of 38 patients with lower jaw tumors was carried out. The patients had been treated with partial resection of the lower jaw and neck dissection with microvascular iliac crest transplants (n = 20) or microvascular scapula transplants (n = 18); this was followed with dental implants (n = 143) in the region of the transplants or the local lower jaw. One hundred thirty-nine of the 143 dental implants were loaded by prosthetic superstructures. In all patients, the implant situation was evaluated on average 2 years 5 months after implantation. Periotest values, periimplant probing depths, and contact bleeding were registered, and the extent of periimplant bone loss was defined radiographically. The clinical situation in the region of the implant was compared for both types of implants and also with the nonresected lower jaw. The average Periotest values were within the normal range for all groups. In one scapula implant, however, a better average of Periotesting, -3.3, was found compared with implants of the iliac crest with Periotest values of -0.7. A measurement of -2.1 was found for the local lower jaw, similar to that of scapula implants. Pathologic probing depths were found for all three compared groups. The radiographically determined vertical loss of bone was the same for all three groups, on average 1 mm at 27 months postoperatively. The highest incidence of sulcus bleeding was found in the scapula implant group. Thus, it can be stated that the scapula transplants provide a similar transplant site to local lower jaw bone, whereas implants in iliac crest transplants show lesser bony stability. Periimplant soft-tissue conditions are worse for both types of transplants compared with local tissue of the lower jaw.  相似文献   

12.
Growth kinetics of the donor-type thymus cell population after transplantation of bone marrow into irradiated syngeneic recipient mice is biphasic. During the first rapid phase of regeneration, lasting until day 19 after transplantation, the rate of development of the donor cells is independent of the number of bone marrow cells inoculated. the second slow phase is observed only when low numbers of bone marrow cells (2.5 × 104) are transplanted. the decrease in the rate of development is attributed to an efflux of donor cells from the thymus because, at the same time, the first immunologically competent cells are found in spleen. After bone marrow transplantation the regeneration of thymocyte progenitor cells in the marrow is delayed when compared to regeneration of CFUs. Therefore, regenerating marrow has a greatly reduced capacity to restore the thymus cell population. One week after transplantation of 3 × 106 cells, 1% of normal capacity of bone marrow is found. It is concluded that the regenerating thymus cells population after bone marrow transplantation is composed of the direct progeny of precursor cells in the inoculum.  相似文献   

13.
Dupuytren's contracture tissues were obtained from six patients as excess surgical material. Pieces of these tissues (a total of 38 implants) were placed into subcutaneous pockets in the suprascapular area of nude (athymic) mice. The objective was to determine whether the implant tissues would be maintained in the mouse with the characteristics of Dupuytren's tissue. The implants were removed for study at 14-179 days after implantation. Microvascular anastomosis between implant and host skin was established within the first 14 days. Histologic character and electron microscopic structure of the implants did not change during the course of the study. The implants became reduced in size with time. However, neither the spatial pattern of collagen nor the appearance of fibroblast cells changed. The original high levels of chondroitin-4-sulfate were significantly decreased in the 66- to 179-day postimplantation group, but were not significantly different from the values for normal fascial bands. The hyaluronic acid of the implants increased significantly with time of implantation, but never reached the level found in the normal fascial bands. The use of implants into nude mice may be useful for further experimental studies of Dupuytren's contracture.  相似文献   

14.
A longitudinal study was conducted on 85 patients who received silicone rubber implants to the chin. Over half of these patients were found to have some absorption of the bone beneath the implants, and much other information was obtained. There were no concomitant changes in the soft tissue profile in the patients who demonstrated bone absorption under their implants. It appeared that the bone absorption was less when the implant was placed over the hard bone of the lower part of the mandible, rather than higher or over alveolar bone.  相似文献   

15.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

16.
For some years, the implantation of small pieces of gold has been used as an unauthorised remedy for osteoarthritis and pain. The aim of the present study was to evaluate whether gold ions are released from gold implants. Pieces of pure gold were placed in the connective tissue of skin, bone and brains of anaesthetised animals. Ten days to several months later the animals were anaesthetised and killed by transcardial perfusion. Tissue blocks containing the gold pieces were cut, and the sections were silver-enhanced by autometallography. It was found that gold ions are released from the implanted gold and diffuse out into the surrounding tissue. The gold-containing cells in connective tissues were macrophages, mast cells and fibroblasts. In the brain, gold accumulated in astrocytes and neurons. Proton-induced X-ray emission spectroscopy analysis of the tissue surrounding gold implants confirmed that gold ions are liberated. The findings suggest that the gold implant technique, on a local scale, mimics systemic treatment with a gold-containing drug.  相似文献   

17.
Research in biomaterials for bone reconstruction has led to elaborate osteogenic composites that combine porous ceramics with bone marrow stromal cells. The aim of this study was to evaluate the influence of direct vascularization of such composites on osteogenesis and the ability to produce a vascularized bone substitute transplant in an ectopic muscular site. Sixty-four coralline biomaterials were implanted in 32 Fisher rats under four conditions: (1) alone (reference group M, n = 16), (2) coated with bone marrow stromal cells (group MC, n = 16), (3) combined with a vascular pedicle (group MV, n = 16), or (4) coated with bone marrow stromal cells and combined with a vascular pedicle (MCV group, n = 16). The number of vessels in the pores (vessel-pore ratio) of the implants and the proportion of pores showing bone ingrowth (bone-pore ratio) were measured at 2, 4, 6, and 8 weeks on four implants of each group. Compared with the reference group, angiogenesis was higher when the biomaterial was combined with a vascular pedicle or was coated with osteoprogenitor cells. The association of both vascular pedicle and osteoprogenitor cells increased vascularization by 60 percent (p = 0.003) and osteogenesis by 62 percent (p < 0.001). A combination of both vascular pedicle and bone marrow osteoprogenitor cells in coralline implants enhances neovascularization and osteogenesis after implantation in ectopic intramuscular sites to a greater extent than either does alone.  相似文献   

18.
The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 µm) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 µm) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions.  相似文献   

19.
The aim of this study was to investigate capability of cell attachment and ectopic bone formation in pigs after either ex vivo transplantation and expansion of bone marrow stem cells (BMSc) into three-dimensional porous tantalum, or porous tantalum supplemented with BMSc. After 24 hours incubation, cells adhering to the porous tantalum discs were quantified by means of scintillation counting of 3H-thymidine-labeled cells. After 7 days of incubation, the cell-loaded porous tantalum discs were harvested for histological analysis or implanted in the infrasternal muscle; an empty disc and disc implanted immediately after cell loading served as controls. All implants were taken out after 8 weeks of implantation and histological examination was performed. The results of in vitro cell attachment to the porous tantalum discs were not improved significantly with gelatin, collagen or fibronectin coatings. Histological analysis of cell loaded discs in vitro demonstrated viable BMSc within the 3-D tantalum structure. In vivo bone induction was demonstrated when the porous tantalum discs were cultured with BMSc. Our findings indicated that porous tantalum was suitable for cell attachment, and ectopic bone formation in pigs was achieved by means of BMSc cultured with porous tantalum. The present study suggests that cell-mediated hard bone tissue repair technology makes it possible to prefabricate autologous BMSc into three-dimensional trabecular metal in order to engineer bone tissue.  相似文献   

20.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号