首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have described a partially defined system for the DNA-directed in vitro synthesis of beta-galactosidase (Kung, H.F., Redfield, B., Treadwell, B.V., Eskin, B., Spears, C., and Weissbach, H. (1977) J. Biol. Chem. 252, 6889-6894). An Ehrlich ascites extract was shown in these in vitro studies to acylate Escherichia coli tRNA with 13 amino acids, and the ascites extract was used in place of the corresponding 13 E. coli aminoacyl-tRNA synthetases. The present studies indicate that the ascites extract is supplying an additional protein factor, besides the aminoacyl-tRNA synthetases, that stimulates the DNA-directed synthesis of beta-galactosidase. The protein factor has been highly purified and may be functioning by protecting mRNA against degradation. In addition, NAD or T4 DNA ligase stimulates the synthesis of beta-galactosidase in the partially defined system.  相似文献   

2.
3.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

4.
Upon fractionation of a mitochondria-free extract of rabbit reticulocytes into a ribosome-free extract and mono- and polyribosomes the bulk of the aminoacyl-tRNA synthetase activity was found in the fraction of mono- and polyribosomes. All the fifteen aminoacyl-tRNA synthetases were revealed, although in somewhat different quantities, in both fractions of the mitochondria-free reticulocyte extract. Aminoacyl-tRNA synthetases of the ribosome-free extract are found in two forms: RNA-binding one, and, the one having no affinity for high molecular weight RNAs. Aminoacyl-tRNA synthetases dissociated from the complexes with polyribosomes exist only in the RNA-binding form. All aminoacyl-tRNA synthetases can be removed from such complexes by an addition of 16S rRNA of E. coli, poly(U) or tRNA of rabbit reticulocytes. This testifies to labile association of aminoacyl-tRNA synthetases with the RNA-component of polyribosomes as well as to a rather nonspecific character of their interaction. After EDTA-induced dissociation of polyribosomes, the aminoacyl-tRNA synthetase activity was detected in the complex with both ribosomal subunits.  相似文献   

5.
The aminoacyl-tRNA synthetases from a crude extract of yeast were shown to bind to heparin-Ultrogel through ionic interactions, in conditions where the corresponding enzymes from Escherichia coli did not. The behaviour of purified lysyl-tRNA synthetases from yeast and E. coli was examined in detail. The native dimeric enzyme from yeast (Mr 2 X 73000) strongly interacted with immobilized heparin or tRNA, as well as with negatively charged liposomes, in conditions where the corresponding native enzyme from E. coli (Mr 2 X 65000) displayed no affinity for these supports. Moreover, the aptitude of the native enzyme from yeast to interact with polyanionic carriers was lost on proteolytic conversion to a fully active modified dimer of Mr 2 X 65500. A structural model is proposed, according to which each subunit of yeast lysyl-tRNA synthetase is composed of a functional domain similar in size to that of the prokaryotic enzyme, contiguous to a 'binding' domain responsible for association to negatively charged carriers. The evolutionary acquisition of this property by lower eukaryotic aminoacyl-tRNA synthetases suggests that it fulfils an important function in vivo, unrelated to catalysis. We propose that it promotes the compartmentalization of these enzymes within the cytoplasm, through associations with as yet unidentified, negatively charged components, by electrostatic interactions too fragile to withstand the usual extraction conditions.  相似文献   

6.
At 5 mM Mg2+, spermidine stimulation of polyphenylalanine synthesis by cell-free extracts of Escherichia coli was found to be about 30 times greater than that by extracts of Pseudomonas sp. strain Kim, a unique organism which lacks detectable levels of spermidine. By means of reconstitution experiments, the target of spermidine stimulation was localized to the protein fraction of the highspeed supernatant component (S-100) of E. coli and was absent from, or deficient in, the S-100 fraction of Pseudomonas sp. strain Kim. The spermidine stimulation did not appear to be due to the presence in the E. coli S-100 fraction of ribosomal protein S1, elongation factors, or E. coli aminoacyl-tRNA synthetases. The failure to observe spermidine stimulation by the Pseudomonas sp. strain Kim S-100 fraction was also not due to a spermidine-enhanced polyuridylic acid degradation. The synthesis of polyphenylalanine by Pseudomonas sp. strain Kim extracts was stimulated by putrescine and by S-(+)-2-hydroxyputrescine to a greater degree than was synthesis by E. coli extracts. The enhancement by putrescine and by S-(+)-2-hydroxyputrescine with Pseudomonas sp. strain Kim extracts was found to be due to effects on its ribosomes.  相似文献   

7.
Thermostable aminoacyl-tRNA synthetases specific to Val, Ile, Met and Glu were purified from an extreme thermophile, Thermus thermophilus HB8. As for the subunit compositions and molecular weights, these four aminoacyl-tRNA synthetases are similar to the corresponding enzymes from E. coli and B. stearothermophilus. Val-tRNA, Ile-tRNA and Met-tRNA synthetases from T. thermophilus have two tightly bound zinc ions, whereas Glu-tRNA synthetase does not. The amino acid compositions and secondary structures of Val-tRNA, Ile-tRNA and Met-tRNA synthetases are quite similar to one another. The conformational transition involving the anticodon of E. coli tRNAGlu as complexed with Glu-tRNA synthetase from T. thermophilus is necessary for the aminoacylation activity.  相似文献   

8.
D Kern  J Lapointe 《Biochimie》1979,61(11-12):1257-1272
A general separation procedure of the twenty E. coli aminoacyl-tRNA synthetases including either a 105 000 g centrifugation or a poly-ethyleneglycol-dextran two-phases partition fractionation, and chromatographies on DEAE-cellulose, phosphocellulose and hydroxyapatite is described. The specific activities of the synthetases have been determined after each chromatographic step and compared to their respective activities in the 105 000 g supernatant. Some aminoacyl-tRNA synthetases were obtained at 80 per cent purity. The presence of phenylmethylsulfonyl fluoride does not significantly modify either the elution patterns of the synthetases during the various chromatographic steps or their specific activities. Thus, contrarily to enzymes from various eukaryotic organisms no significant inactivation of the E. coli aminoacyl-tRNA synthetases occurs via proteolytic processes during the purification procedure. The effects of various factors: pH, magnesium, and other bivalent cations including spermidine, were tested on the aminoacylation and the [32P] PPi-ATP isotope-exchange reactions, and the optimal aminoacylation and isotope-exchange conditions determined for 18 of the 20 E. coli aminoacyl-tRNA synthetases.  相似文献   

9.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

10.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

11.
12.
The effect of elevated temperature on the activity of various components involved in protein synthesis was investigated in extracts from cultured Chinese hamster ovary cells. The translation of exogenous mRNA was markedly inhibited by preincubation of the extract for 15 to 20 minutes at 42°C. However, the following intermediary reactions were not affected, or only slightly inhibited, at 42°C: 1) the incorporation of Met-tRNAf into eIF-2·Met-tRNAf·GTP ternary complex; 2) the interaction of the ternary complex with 40S ribosomal subunits to form the 40S preinitiation intermediate; 3) the binding of mRNA and 60S subunits to form the 80S initiation complex; and 4) the reactions catalyzed by elongation factors EF-1 and EF-2. The activity of Met-tRNA synthetase was markedly inhibited, affecting the formation of initiator Met-tRNAf required for the initiation of protein synthesis and the translation of natural mRNA. Other aminoacyl-tRNA synthetases were not significantly affected by the elevated temperature.  相似文献   

13.
Gene 1.2 protein of bacteriophage T7. Effect on deoxyribonucleotide pools   总被引:8,自引:0,他引:8  
The gene 1.2 protein of bacteriophage T7, a protein required for phage T7 growth on Escherichia coli optA1 strains, has been purified to apparent homogeneity and shown to restore DNA packaging activity of extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants (Myers, J. A., Beauchamp, B. B., White, J. H., and Richardson, C. C. (1987) J. Biol. Chem. 262, 5280-5287). After infection of E. coli optA1 by T7 gene 1.2 mutant phage, under conditions where phage DNA synthesis is blocked, the intracellular pools of dATP, dTTP, and dCTP increase 10-40-fold, similar to the increase observed in an infection with wild-type T7. However, the pool of dGTP remains unchanged in the mutant-infected cells as opposed to a 200-fold increase in the wild-type phage-infected cells. Uninfected E. coli optA+ strains contain severalfold higher levels of dGTP compared to E. coli optA1 cells. In agreement with this observation, dGTP can fully substitute for purified gene 1.2 protein in restoring DNA packaging activity to extracts prepared from E. coli optA1 cells infected with T7 gene 1.2 mutants. dGMP or polymers containing deoxyguanosine can also restore packaging activity while dGDP is considerably less effective. dATP, dTTP, dCTP, and ribonucleotides have no significant effect. The addition of dGTP or dGMP to packaging extracts restores DNA synthesis. Gene 1.2 protein elevates the level of dGTP in these packaging extracts and restores DNA synthesis, thus suggesting that depletion of a guanine deoxynucleotide pool in E. coli optA1 cells infected with T7 gene 1.2 mutants may account for the observed defects.  相似文献   

14.
Transformation of an E. coli strain with a recombinant plasmid DNA (pB1) encoding the genes for phenylalanyl- and threonyl-tRNA synthetases causes overproduction of these enzymes by about 100- and 5-fold, respectively. A possible effect of the overproduction of the two aminoacyl-tRNA synthetases on intracellular cognate tRNA levels has been searched for by comparing tRNAThr and tRNAPhe aminoacylation capacities in the RNA extracts from strains carrying pB1 or pBR322 plasmid DNA. The answer is that the levels of these tRNAs are not changed by selective increase of the cognate synthetases.  相似文献   

15.
The phosphorylation of a highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes by the cyclic nucleotide-independent protein kinase, casein kinase I, has been examined, and the effects of phosphorylation on the synthetase activities were determined. The synthetase complex, purified as described (Kellermann, O., Tonetti, H., Brevet, A., Mirande, M., Pailliez, J.-P., and Waller, J.-P. (1982) J. Biol. Chem. 257, 11041-11048), contains seven aminoacyl-tRNA synthetases and four unidentified proteins and is free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP results in the phosphorylation of four synthetases, namely, glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I alters binding of the aminoacyl-tRNA synthetase complex to tRNA-Sepharose. The phosphorylated synthetase complex elutes from tRNA-Sepharose at 190 mM NaCl, while the nonphosphorylated complex elutes at 275 mM NaCl. Phosphorylation by casein kinase I results in a significant inhibition of aminoacylation by the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases; the activities of the nonphosphorylated synthetases remain unchanged. These data indicate that phosphorylation of aminoacyl-tRNA synthetases in the high molecular weight complex alters the activities of these enzymes. One of the unidentified proteins present in the complex (Mr 37,000) is also highly phosphorylated by casein kinase I. From a comparison of the properties and phosphopeptide pattern of this protein with that of casein kinase I, it appears that the Mr 37,000 protein in the synthetase complex is an inactive form of casein kinase I. This observation provides further evidence for a physiological role for casein kinase I in regulating synthetase activities.  相似文献   

16.
Because of previous data suggesting that aminoacyl-tRNA synthetases make a transient Michael adduct with a specific uridine residue in the tRNA structure, (Schoemaker, H.J.P., and Schimmel, P.R. (1977) Biochemistry 16, 5454-5460) attempts were made to find simple model systems in which this reaction might be studied in more detail. In the course of these investigations, it was found that Escherichia coli Ile-tRNA synthetase catalyzes cleavage of the glycosidic bond of 5-bromouridine. At pH 7.5, ambient temperatures, the turnover number is roughly 5/h. 5-Fluoro-, 5-chloro-, and 5-iodouridine are also cleaved in an analogous way by Ile-tRNA synthetase. In the case of uridine, conversion of uridine to uracil and ribose was also detected, but with a smaller turnover number. Three other E. coli and one mammalian aminoacyl-tRNA synthetases were also examined and all were found to catalyze glycosidic bond cleavage of 5-bromouridine. The data indicate that, in general, synthetases have a catalytic center that shows an unusual reactivity for uridine.  相似文献   

17.
The catalytical properties and thermostability of free leucyl-, glutamyl- and lysyl-tRNA synthetases and of the same synthetases in codosomes are compared. The stability of different aminoacyl-tRNA synthetases in highly purified preparations and in codosomes did not submit to any common regularities. Km for all substrates both for purified and assembled ARSases are values of the same order. It is shown in some model systems that the aminoacyl-tRNA synthetase activity in codosomes depends on the presence of pyrophosphatase. Other important components of codosomes are protein kinases and phospholipids which are able to influence the aminoacyl-tRNA synthetase activity and structural organization.  相似文献   

18.
The subcellular distribution of five aminoacyl-tRNA synthetases from yeast, including lysyl-, arginyl- and methionyl-tRNA synthetases known to exist as high-molecular-weight complexes in lysates from higher eukaryotes, was investigated. To minimize the risks of proteolysis, spheroplasts prepared from exponentially grown yeast cells were lysed in the presence of several proteinase inhibitors, under conditions which preserved the integrity of the proteinase-rich vacuoles. The vacuole-free supernatant was subjected to sucrose density gradient centrifugation. No evidence for multimolecular associations of these enzymes was found. In particular, phenylalanyl-tRNA synthetase activity was not associated with the ribosomes, whereas purified phenylalanyl-tRNA synthetase from sheep liver, added to the yeast lysate prior to centrifugation, was entirely recovered in the ribosomal fraction. A mixture of lysates from yeast and rabbit liver was also subjected to sucrose gradient centrifugation and assayed for methionyl- and arginyl-tRNA synthetase activities, under conditions which allowed discrimination between the enzymes originating from yeast and rabbit. The two enzymes from rabbit liver were found to sediment exclusively as high-molecular-weight complexes, in contrast to the corresponding enzymes from yeast, which displayed sedimentation properties characteristic of free enzymes. The preservation of the complexed forms of mammalian aminoacyl-tRNA synthetases upon mixing of yeast and rabbit liver extracts argues against the possibility that failure to observe complexed forms of these enzymes in yeast was due to uncontrolled proteolysis. Furthermore, this result denies the presence, in the crude extract from liver, of components capable of inducing artefactual aggregation of the yeast aminoacyl-tRNA synthetases, and thus indirectly argues against an artefactual origin of the multienzyme complexes encountered in lysates from mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号