首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

2.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

3.
Neutralizing antibodies that recognize the human immunodeficiency virus gp120 exterior envelope glycoprotein and are directed against either the third variable (V3) loop or conserved, discontinuous epitopes overlapping the CD4 binding region have been described. Here we report several observations that suggest a structural relationship between the V3 loop and amino acids in the fourth conserved (C4) gp120 region that constitute part of the CD4 binding site and the conserved neutralization epitopes. Treatment of the gp120 glycoprotein with ionic detergents resulted in a V3 loop-dependent masking of both linear C4 epitopes and discontinuous neutralization epitopes overlapping the CD4 binding site. Increased recognition of the native gp120 glycoprotein by an anti-V3 loop monoclonal antibody, 9284, resulted from from single amino acid changes either in the base of the V3 loop or in the gp120 C4 region. These amino acid changes also resulted in increased exposure of conserved epitopes overlapping the CD4 binding region. The replication-competent subset of these mutants exhibited increased sensitivity to neutralization by antibody 9284 and anti-CD4 binding site antibodies. The implied relationship of the V3 loop, which mediates post-receptor binding steps in virus entry, and components of the CD4 binding region may be important for the interaction of these functional gp120 domains and for the observed cooperativity of neutralizing antibodies directed against these regions.  相似文献   

4.
While one hypervariable, linear neutralizing determinant on the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein has been well characterized, little is known about the conserved, discontinuous gp120 epitopes recognized by neutralizing antibodies in infected individuals. Here, the epitope recognized by a broadly reactive neutralizing monoclonal antibody (F105) derived from an HIV-1-infected patient was characterized by examining the effects of changes in conserved gp120 amino acids on antibody reactivity. The F105 epitope was disrupted by changes in gp120 amino acids 256 and 257, 368 to 370, 421, and 470 to 484, which is consistent with the discontinuous nature of the epitope. Three of these regions are proximal to those previously shown to be important for CD4 binding, which is consistent with the ability of the F105 antibody to block gp120-CD4 interaction. Since F105 recognition was more sensitive to amino acid changes in each of the four identified gp120 regions than was envelope glycoprotein function, replication-competent mutant viruses that escaped neutralization by the F105 antibody were identified. These studies identify a conserved, functional HIV-1 gp120 epitope that is immunogenic in man and may serve as a target for therapeutic or prophylactic intervention.  相似文献   

5.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

7.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

8.
A panel of seven monoclonal antibodies against the relatively conserved CD4-binding domain on human immunodeficiency virus type 1 (HIV-1) gp120 was generated by immunizing mice with purified gp120. These monoclonal antibodies reacted specifically with gp120 in an enzyme-linked immunosorbent assay and Western blots (immunoblots). By using synthetic peptides as antigens in the immunosorbent assay, the epitopes of these seven monoclonal antibodies were mapped to amino acid residues 423 to 437 of gp120. Further studies with radioimmunoprecipitation assays showed that they cross-reacted with both gp120 and gp160 of diverse HIV-1 isolates (HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, and HTLV-IIIWMJ). They also bound specifically to H9 cells infected with HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, HTLV-IIIZ84, and HTLV-IIIZ34 in indirect immunofluorescence studies. In addition, they blocked effectively the binding of HIV-1 to CD4+ C8166 cells. Despite the similarity of these properties, the monoclonal antibodies differed in neutralizing activity against HTLV-IIIB, HTLV-IIIRF, and HTLV-IIIAL, as demonstrated in both syncytium-forming assays and infectivity assays. Our findings suggest that these group-specific monoclonal antibodies to the putative CD4-binding domain on gp120 are potential candidates for development of therapeutic agents against acquired immunodeficiency disease syndrome.  相似文献   

9.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

10.
Deletions of the major variable regions (V1/V2, V3, and V4) of the human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein were created to study the role of these regions in function and antigenicity. Deletion of the V4 region disrupted processing of the envelope glycoprotein precursor. In contrast, the deletion of the V1/V2 and/or V3 regions yielded processed exterior envelope glycoproteins that retained the ability to interact with the gp41 transmembrane glycoprotein and the CD4 receptor. Shedding of the gp120 exterior glycoprotein by soluble CD4 was observed for the mutant with the V3 deletion but did not occur for the V1/V2-deleted mutant. None of the deletion mutants formed syncytia or supported virus entry. Importantly, the affinity of neutralizing antibodies directed against the CD4-binding region for the multimeric envelope glycoprotein complex was increased dramatically by the removal of both the V1/V2 and V3 structures. These results indicate that, in addition to playing essential roles in the induction of membrane fusion, the major variable regions mask conserved neutralization epitopes of the HIV-1 gp120 glycoprotein from antibodies. These results explain the temporal pattern associated with generation of HIV-1-neutralizing antibodies following infection and suggest stratagems for eliciting improved immune responses to conserved gp120 epitopes.  相似文献   

11.
Sulfated tyrosines at the amino terminus of the principal HIV-1 coreceptor CCR5 play a critical role in its ability to bind the HIV-1 envelope glycoprotein gp120 and mediate HIV-1 entry. Human antibodies that recognize the CCR5-binding region of gp120 are also modified by tyrosine sulfation, which is necessary for their ability to neutralize HIV-1. Here we demonstrate that a sulfated peptide derived from the CDR3 region of one of these antibodies, E51, can efficiently bind gp120. Association of this peptide, pE51, with gp120 requires tyrosine sulfation and is enhanced by, but not dependent on, CD4. Alteration of any of four pE51 tyrosines, or alteration of gp120 residues 420, 421, or 422, critical for association with CCR5, prevents gp120 association with pE51. pE51 neutralizes HIV-1 more effectively than peptides based on the CCR5 amino terminus and may be useful as a fusion partner with other protein inhibitors of HIV-1 entry. Our data provide further insight into the association of the CCR5 amino terminus with gp120, show that a conserved, sulfate-binding region of gp120 is accessible to inhibitors in the absence of CD4, and suggest that soluble mimetics of CCR5 can be more effective than previously appreciated.  相似文献   

12.
The sequential association of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 and a seven-transmembrane segment coreceptor such as CCR5 or CXCR4 initiates entry of the virus into its target cell. The N terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in the CD4-dependent association of gp120 with CCR5 and in viral entry. Here we demonstrate that a tyrosine-sulfated peptide based on the N terminus of CCR5, but not its unsulfated analogue, inhibits infection of macrophages and peripheral blood mononuclear cells by CCR5-dependent, but not CXCR4-dependent, HIV-1 isolates. The sulfated peptide also inhibited the association of CCR5-expressing cells with gp120-soluble CD4 complexes and, less efficiently, with MIP-1alpha. Moreover, this peptide inhibited the precipitation of gp120 by 48d and 23e antibodies, which recognize CD4-inducible gp120 epitopes, but not by several other antibodies that recognize proximal epitopes. The ability of the sulfated peptide to block 48d association with gp120 was dependent in part on seven tropism-determining residues in the third variable (V3) and fourth conserved (C4) domains of gp120. These data underscore the important role of the N-terminal sulfate moieties of CCR5 in the entry of R5 HIV-1 isolates and localize a critical contact between gp120 and CCR5.  相似文献   

13.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

14.
Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding.  相似文献   

15.
Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals.  相似文献   

16.
The primary event in the infection of cells by HIV is the interaction between the viral envelope glycoprotein, gp120, and its cellular receptor, CD4. A recombinant form of gp120 was found to bind to a recombinant CD4 antigen with high affinity. Two gp120-specific murine monoclonal antibodies were able to block the interaction between gp120 and CD4. The gp120 epitope of one of these antibodies was isolated by immunoaffinity chromatography of acid-cleaved gp120 and shown to be contained within amino acids 397-439. Using in vitro mutagenesis, we have found that deletion of 12 amino acids from this region of gp120 leads to a complete loss of binding. In addition, a single amino acid substitution in this region results in significantly decreased binding, suggesting that sequences within this region are directly involved in the binding of gp120 to the CD4 receptor.  相似文献   

17.
The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.  相似文献   

18.
Naturally occurring human immunodeficiency virus (HIV-1) variants require the presence of CD4 and specific chemokine receptors to enter a cell. In the laboratory, HIV-1 variants that are capable of bypassing CD4 and utilizing only the CCR5 chemokine receptor for virus entry have been generated. Here we report that these CD4-independent viruses are significantly more sensitive to neutralization by soluble CD4 and a variety of antibodies. The same amino acid changes in the HIV-1 gp120 envelope glycoprotein determined CD4 independence and neutralization sensitivity. The CD4-independent envelope glycoproteins exhibited higher affinity for antibodies against CD4-induced gp120 epitopes but not other neutralizing ligands. The CD4-independent envelope glycoproteins did not exhibit increased lability relative to the wild-type envelope glycoproteins. The utilization of two receptors apparently allows HIV-1 to maintain a more neutralization-resistant state prior to engaging CD4 on the target cell, explaining the rarity of CD4 independence in wild-type HIV-1.  相似文献   

19.
Sulfated tyrosines at the amino terminus of the principal HIV-1 coreceptor CCR5 play a critical role in its ability to bind the HIV-1 envelope glycoprotein gp120 and mediate HIV-1 infection. Here, we show that a number of human antibodies directed against gp120 are tyrosine sulfated at their antigen binding sites. Like that of CCR5, antibody association with gp120 is dependent on sulfate moieties, enhanced by CD4, and inhibited by sulfated CCR5-derived peptides. Most of these antibodies preferentially associate with gp120 molecules of CCR5-utilizing (R5) isolates and neutralize primary R5 isolates more efficiently than laboratory-adapted isolates. These studies identify a distinct subset of CD4-induced HIV-1 neutralizing antibodies that closely emulate CCR5 and demonstrate that tyrosine sulfation can contribute to the potency and diversity of the human humoral response.  相似文献   

20.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号