首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 μM and 19 μM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 μM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (< 5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other “single-chain” lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   

2.
The behaviour of N-hexadecanoylsphingosine (Cer16), N-hexanoylsphingosine (Cer6) and N-acetylsphingosine (Cer2) in aqueous media and in lipid-water systems, monolayers and bilayers has been comparatively examined using Langmuir balance and fluorescence techniques. Cer16 behaves as an insoluble non-swelling amphiphile, not partitioning into the air-water interface, thus not modifying the surface pressure of the aqueous solutions into which it is included. By contrast both Cer6 and Cer2 behave as soluble amphiphiles, up to approx. 100 microM. At low concentrations, they become oriented at the air-water interface, increasing surface pressure in a dose-dependent way up to ca. 5 microM bulk concentration. At higher concentrations, the excess ceramide forms micelles, critical micellar concentrations of both Cer6 and Cer2 being in the 5-6 microM range. When the air-water interface is occupied by a phospholipid, 6Cer2 and Cer6 become inserted in the phospholipid monolayer, causing a further increase in surface pressure. This increase is dose dependent, and reaches a plateau at ca. 2 microM ceramide bulk concentration. Both Cer2 and Cer6 become inserted in phospholipid monolayers with initial surface pressures of up to 43 and 46 mN m(-1), respectively, which ensures their capacity to become inserted into cell membranes whose monolayers are estimated to support a surface pressure of about 30 mN m(-1). Both Cer2 and Cer6, but not Cer16, had detergent-like properties, such as giving rise to phospholipid-ceramide mixed micelles, when added to phospholipid monolayers or bilayers. The short-chain ceramides form large aggregates and precipitate at concentrations above approx. 100 microM. These results are relevant in cell physiology studies in which short- and long-chain ceramides are sometimes used as equivalent molecules, in spite of their different biophysical behaviour.  相似文献   

3.
The behaviour of N-hexadecanoylsphingosine (Cer16), N-hexanoylsphingosine (Cer6) and N-acetylsphingosine (Cer2) in aqueous media and in lipid-water systems, monolayers and bilayers has been comparatively examined using Langmuir balance and fluorescence techniques. Cer16 behaves as an insoluble non-swelling amphiphile, not partitioning into the air-water interface, thus not modifying the surface pressure of the aqueous solutions into which it is included. By contrast both Cer6 and Cer2 behave as soluble amphiphiles, up to approx. 100 μM. At low concentrations, they become oriented at the air-water interface, increasing surface pressure in a dose-dependent way up to ca. 5 μM bulk concentration. At higher concentrations, the excess ceramide forms micelles, critical micellar concentrations of both Cer6 and Cer2 being in the 5-6 μM range. When the air-water interface is occupied by a phospholipid, 6Cer2 and Cer6 become inserted in the phospholipid monolayer, causing a further increase in surface pressure. This increase is dose dependent, and reaches a plateau at ca. 2 μM ceramide bulk concentration. Both Cer2 and Cer6 become inserted in phospholipid monolayers with initial surface pressures of up to 43 and 46 mN m−1, respectively, which ensures their capacity to become inserted into cell membranes whose monolayers are estimated to support a surface pressure of about 30 mN m−1. Both Cer2 and Cer6, but not Cer16, had detergent-like properties, such as giving rise to phospholipid-ceramide mixed micelles, when added to phospholipid monolayers or bilayers. The short-chain ceramides form large aggregates and precipitate at concentrations above approx. 100 μM. These results are relevant in cell physiology studies in which short- and long-chain ceramides are sometimes used as equivalent molecules, in spite of their different biophysical behaviour.  相似文献   

4.
The interaction of phosphatidylcholine bilayers with Triton X-100   总被引:1,自引:0,他引:1  
The interaction of multilamellar phosphatidylcholine vesicles with the non-ionic detergent Triton X-100 has been studied under equilibrium conditions, specially in the sub-lytic range of surfactant concentrations. Equilibrium was achieved in less than 24 h. Estimations of detergent binding to bilayers, using [3H]Triton X-100, indicate that the amphiphile is incorporated even at very low concentrations (below its critical micellar concentration); a dramatic increase in the amount of bound Triton X-100 occurs at detergent concentrations just below those producing membrane solubilization. Solubilization occurs at phospholipid/detergent molar ratios near 0.65 irrespective of lipid concentration. The perturbation produced by the surfactant in the phospholipid bilayer has been studied by differential scanning calorimetry, NMR and Fourier-transform infrared spectroscopy. At low detergent concentration (lipid/detergent molar ratios above 3), a reduction in 2H-NMR quadrupolar splitting occurs, suggesting a decrease in the static order of the acyl chains; the same effect is detected by Fourier-transform infrared spectroscopy in the form of blue shifts of the methylene stretching vibration bands. Simultaneously, the enthalpy variation of the main phospholipid phase transition is decreased by about a third with respect to its value in the pure lipid/water system. For phospholipid/detergent molar ratios between 3 and 1, the decrease in lipid static order does not proceed any further; rather an increase in fluidity is observed, characterized by a marked decrease in the midpoint transition temperature of the gel-to-fluid phospholipid transition. At the same time an isotropic component is apparent in both 31P-NMR and 2H-NMR spectra, and a new low-temperature endotherm is detected in differential scanning calorimetric traces. When phospholipid and Triton X-100 are present at equimolar ratios some bilayer structure persists, as judged from calorimetric observations, but NMR reveals only one-component isotropic signals. At lipid/detergent molar ratios below unity, the NMR lines become narrower, the main (lamellar) calorimetric endotherm tends to vanish and solubilization occurs.  相似文献   

5.
The purpose of this study was to determine whether human vasoactive intestinal peptide (VIP) aggregates in aqueous solution and, if so, whether the peptide interacts with a biomimetic phospholipid monolayer and increases surface pressure. Using a custom-made Teflon trough containing HEPES buffer (pH 7.4) at room temperature and a surface tensiometer, we found that the critical micellar concentration (CMC) of VIP is 0.4 microM. Surface pressure of a dipalmitoylphosphatidylcholine (DPPC) monolayer spread over the HEPES buffer declined significantly over 120 min because of phospholipid decomposition. However, injection of VIP at concentrations above CMC into the subphase of the monolayer elicited a significant concentration-dependent increase in surface pressure that persisted for 120 min (P < 0.05). Unlike VIP, injection of [(8)Arg]-vasopressin at an equimolar concentration only prevented the time-dependent decline in DPPC monolayer surface pressure. Taken together, these data indicate that human VIP aggregates in aqueous solution and expresses surface-active properties at physiological concentrations in vitro. We suggest that these attributes could have a role in modulating the bioactive effects of the peptide in vivo.  相似文献   

6.
Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) is an anti-tumour cell ether lipid with surface-active properties. Pure edelfosine can be dispersed in aqueous media in the form of micelles. One important, negative side effect of edelfosine is that it is highly haemolytic. In this paper, we show that edelfosine can be co-dispersed in water with certain lipids (particularly cholesterol, campesterol or β-sitosterol) so that it gives rise to liposomes. Surface pressure measurements demonstrate that edelfosine is slowly released from these liposomes. In liposomal form, edelfosine remains apoptogenic for a variety of leukemia cell lines, while its haemolytic effect is abolished. The phenomenon is explained on the basis of the complementarity of the molecular geometries of sterols and edelfosine.  相似文献   

7.
The phospholipid analogue miltefosine or hexadecylphosphocholine (HePC) is a drug of high interest in the treatment for fatal visceral leishmaniasis (VL) due to Leishmania donovani particularly because of its activity by oral route. In this study, the interaction of HePC with a monolayer of beta-palmitoyl-gamma-oleyl-phosphatidylcholine (POPC) as membrane model or sterol (ergosterol or cholesterol) was investigated. At a constant pressure of 25 mN/m, the adsorption kinetics of HePC into the monolayers showed that HePC molecules are inserted into the monolayer of lipids as monomers until the critical micellar concentration (CMC). At HePC concentrations superior to the CMC, the micelles of HePC are deployed at the interface as groups of monomers into the POPC or sterol monolayer. The study of mixture of HePC/(POPC or sterol), spread at the air-water interface, shows that a simple miscibility between HePC and POPC is observed, whereas a high condensation appears between HePC and sterols showing a high affinity between HePC and sterols. In addition, HePC does not act as detergent disturbing membrane integrity.  相似文献   

8.
Synthetic peptides Phd1-3 spanning the cationic carboxy-terminal region of human beta-defensins HBD-1-3 have been shown to have antibacterial activity. Gross morphological changes were seen in E. coli cells treated with these peptides. In this paper, we have studied the surface-active properties of peptides Phd1-3 and their interactions with different phospholipids using Langmuir-Blodgett monolayers. Compression isotherms and increase in pressure on insertion of peptides into lipid monolayers at different initial pressures indicate the affinity of these peptides for negatively charged lipids. Phd3 inserted less effectively into monolayers as compared to Phd1 and Phd2. The peptides differed in their ability to permeabilize the inner membrane of E. coli, with Phd3 being least effective. It is likely that the peptides kill Gram-negative bacteria by more than one mechanism. When hydrophobicity and net charge favor insertion into lipid membranes, then membrane permeabilization could be the primary event in the killing of bacteria. In cases where membrane insertion does not occur, interaction with phospholipid interface induces highly selective stress that leads to stasis and cell death, as proposed for polymyxin B and bactenecin.  相似文献   

9.
B Gabriel  M Prats  J Teissié 《Biochemistry》1991,30(38):9359-9364
Proton conduction is known to be facilitated along phospholipid monolayers spread on aqueous phases. This property was monitored with mixed cetyltrimethylammonium bromide/phosphatidyl-ethanolamine monolayers. The film was shown to be metastable by surface pressure and fluorescence measurements. The detergent was leaving the interface for the bulk phase. Nevertheless, a fraction of the detergent remained in the lipid matrix, as shown by the binding of the fluorescent probe 8-anilino-1-naphthalensulfonate. Its dissociation constant decreased, and the nature of its binding site was affected, as shown by a shift of its emission spectrum. Apart from film expansion, the properties of the film were affected only at the water/membrane interface. Proton conduction was prevented only when the surface concentration of the detergent was larger than a critical value. Such an effect could be due either to the disruption in the continuity of the conducting hydrogen-bond network or to an electrostatic repulsion of the protons by the interface.  相似文献   

10.
The phospholipid analogue miltefosine or hexadecylphosphocholine (HePC) is a drug of high interest in the treatment for fatal visceral leishmaniasis (VL) due to Leishmania donovani particularly because of its activity by oral route. In this study, the interaction of HePC with a monolayer of β-palmitoyl-γ-oleyl-phosphatidylcholine (POPC) as membrane model or sterol (ergosterol or cholesterol) was investigated. At a constant pressure of 25 mN/m, the adsorption kinetics of HePC into the monolayers showed that HePC molecules are inserted into the monolayer of lipids as monomers until the critical micellar concentration (CMC). At HePC concentrations superior to the CMC, the micelles of HePC are deployed at the interface as groups of monomers into the POPC or sterol monolayer. The study of mixture of HePC/(POPC or sterol), spread at the air-water interface, shows that a simple miscibility between HePC and POPC is observed, whereas a high condensation appears between HePC and sterols showing a high affinity between HePC and sterols. In addition, HePC does not act as detergent disturbing membrane integrity.  相似文献   

11.
M Rafalski  J D Lear  W F DeGrado 《Biochemistry》1990,29(34):7917-7922
Peptides representing the N-terminal 23 residues of the surface protein gp41 of LAV1a and LAVmal strains of the human immunodeficiency virus were synthesized and their interactions with phospholipid vesicles studied. The peptides are surface-active and penetrate lipid monolayers composed of negatively charged but not neutral lipids. Similarly, the peptides induce lipid mixing and solute (6-carboxyfluorescein) leakage of negatively charged, but not neutral, vesicles. Circular dichroism and infrared spectroscopy show that at low peptide:lipid ratios (approximately 1:200), the peptides bind to negatively charged vesicles as alpha-helices. At higher peptide:lipid ratios (1:30), a beta conformation is observed for the LAV1a peptide, accompanied by a large increase in light scattering. The LAVmal peptide showed less beta-structure and induced less light scattering. With neutral vesicles, only the beta conformation and a peptide:lipid ratio-dependent increase in vesicle suspension light scattering were observed for both peptides. We hypothesize that the inserted alpha-helical form causes vesicle membrane disruption whereas the surface-bound beta form induces aggregation.  相似文献   

12.
Detergents are indispensable in the isolation of integral membrane proteins from biological membranes to study their intrinsic structural and functional properties. Solubilization involves a number of intermediary states that can be studied by a variety of physicochemical and kinetic methods; it usually starts by destabilization of the lipid component of the membranes, a process that is accompanied by a transition of detergent binding by the membrane from a noncooperative to a cooperative interaction already below the critical micellar concentration (CMC). This leads to the formation of membrane fragments of proteins and lipids with detergent-shielded edges. In the final stage of solubilization membrane proteins are present as protomers, with the membrane inserted sectors covered by detergent. We consider in detail the nature of this interaction and conclude that in general binding as a monolayer ring, rather than as a micelle, is the most probable mechanism. This mode of interaction is supported by neutron diffraction investigations on the disposition of detergent in 3-D crystals of membrane proteins. Finally, we briefly discuss the use of techniques such as analytical ultracentrifugation, size exclusion chromatography, and mass spectrometry relevant for the structural investigation of detergent solubilized membrane proteins.  相似文献   

13.
Yersinia enterocolitica produces a virulence-associated phospholipase A(2) (YplA) that is secreted via its flagellar type-III secretion apparatus. When the N-terminal 59 amino acids of YplA are removed (giving YplA(S)), it retains phospholipase activity; however, it is altered with respect to the apparent kinetics of hydrolysis using fluorescent phospholipid substrates in micellar form. To explore the physical properties of YplA more carefully, Langmuir phospholipid monolayers were used to study the association of YplA with biological membranes. YPlA and YplA(S) both associate with Langmuir monolayers, but YplA(S) appears to interact better at low initial lipid densities while YplA interacts better at higher densities. This may indicate that the N-terminus of YplA has a role in mediating its initial interaction with compact cellular membranes, which is consistent with spectroscopic observations that fluorescein-labeled YplA may interact more readily with the nonpolar region of liposomes than does YplA(S).  相似文献   

14.
Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit.  相似文献   

15.
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20–30 % lipid and 50–75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2–3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.  相似文献   

16.
The effects of the zwitterionic bile derivative 3-((3-deoxycholamidopropyl)dimethyl-ammonio)-1-propanesulfonate (Chaps) on multilamellar phosphatidylcholine liposomes have been characterized. When the surfactant is added to preformed liposome suspensions, equilibrium is attained in less than 6 h. Fifty percent solubilization, as measured by analysis of lipid P in supernatants after solubilization, occurs at a 0.32 lipid/detergent mole ratio for a 1 mM phospholipid concentration. Fifty percent release of entrapped glucose occurs at the same detergent concentration, suggesting that, in this system, no increase in permeability occurs prior to solubilization. A linear relationship is found between phospholipid concentration and amount of surfactant producing 50% solubilization. No lytic effect of Chaps is seen below 2 mM surfactant, this being probably near the critical micellar concentration of the amphiphile under our conditions. In the sublytic range of detergent concentrations, Chaps binds the lipid bilayers with high affinity, so that, at least at 1 mM phospholipid, the amount of free Chaps is negligible; solubilization starts when about two surfactant molecules are incorporated per phospholipid molecule. Differential scanning calorimetry shows that incorporation of Chaps into saturated phosphatidylcholine bilayers, even at concentrations below those producing solubilization, causes a decrease in the Tc gel-to-liquid crystalline main transition temperature of the phospholipid, and a decrease in the transition enthalpy; at the same time, a "shoulder" appears on the low-temperature side of the main endotherm. The ensemble of our data suggests that the behavior of Chaps toward phospholipid bilayers is intermediate between that of the natural bile derivatives and that of some well-known nonionic synthetic surfactants.  相似文献   

17.
Puroindolines, cationic and cystine-rich low molecular weight lipid binding proteins from wheat seeds, display unique foaming properties and antimicrobial activity. To unravel the mechanism involved in these properties, the interaction of puroindoline-a (PIN-a) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers was studied by coupling Langmuir-Blodgett and imaging techniques. Compression isotherms of PIN-a/phospholipid monolayers and adsorption of PIN-a to lipid monolayers showed that the protein interacted strongly with phospholipids, especially with the anionic DPPG. The electrostatic contribution led to the formation of a highly stable lipoprotein monolayer. Confocal laser scanning microscopy and atomic force microscopy showed that PIN-a was mainly inserted in the liquid-expanded phase of the DPPC, where it formed an aggregated protein network and induced the fusion of liquid-condensed domains. For DPPG, the protein partitioned in both the liquid-expanded and liquid-condensed phases, where it was aggregated. The extent of protein aggregation was related both to the physical state of phospholipids, i.e., condensed or expanded, and to the electrostatic interactions between lipids and PIN-a. Aggregation of PIN-a at air-liquid and lipid interfaces could account for the biological and technological properties of this wheat lipid binding protein.  相似文献   

18.
Membrane events in exocytosis were studied by examining the effect of different detergents on the K+-stimulated release of noradrenaline in the secretory cell line PC 12. The nonionic detergent Triton X-100 and the cationic detergent cetyltrimethylammonium bromide (CTAB) inhibit the noradrenaline release evoked by 55 mM K+ by 50% at very low concentrations (30 microM and 10 microM, respectively). These values are tenfold lower than the critical micellar concentrations (CMC). No such effect was seen with the anionic detergent sodium dodecyl sulphate (NaDodSO4). The inhibitory effect of 30 microM Triton X-100 is reversible, and the recovery from inhibition correlates with the loss of detergent from the cells as demonstrated by binding studies using [3H]Triton X-100. The possible relationship between this inhibition of secretion and the structural properties of the detergent was investigated. The inhibition in the presence of purified Triton X-100 subfractions turned out to be a function of the length of the oligometric ethyleneglycol chain (C6 to C26). The maximal effect was observed for Triton X-100 molecules having a chain length of 16 carbon atoms, which can penetrate just half of the lipid bilayer of the membrane. Additionally, the phase transition at 13-14 degrees C observed in an Arrhenius plot of noradrenaline release in stimulated cells was abolished. In the presence of 30 microM Triton X-100, 22Na+ uptake, 86Rb+ release, and 45Ca2+ uptake were reduced by 50-60%. These data suggest that the site of action of Triton X-100 is at the level of altering the movement of ions in PC 12 cells during the stimulatory phase of secretion.  相似文献   

19.
M T Walsh  D Atkinson 《Biochemistry》1983,22(13):3170-3178
Apoprotein B (apoB) of human plasma low-density lipoprotein (LDL) (d 1.025-1.050 g/mL) has been solubilized with solid sodium deoxycholate (NaDC) above its critical micellar concentration. ApoB is isolated by gel-filtration chromatography as a mixed micellar complex of protein and detergent in high yield in a lipid-free form. A soluble apoB-dimyristoylphosphatidylcholine (DMPC) complex has been prepared by incubation of aqueous solutions of apoB-NaDC and DMPC-NaDC (2/1 w/w) at room temperature with detergent removal by extensive dialysis. A combination of gel chromatographic and density gradient fractionation of DMPC-apoB incubation mixtures demonstrates that a reasonably well-defined complex of DMPC and apoB is formed with a 4:1 w/w lipid:protein ratio. Negative-stain electron microscopy shows these particles to be single-bilayer phospholipid vesicles with a diameter of 210 +/- 20 A into which the apoB is incorporated. Circular dichroic spectra of NaDC-solubilized apoB show apoB to have similar conformation to that seen in the native LDL particle. However, apoB that has been complexed with DMPC exhibits more alpha-helix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band (apparent Mr 366000) for apoB after solubilization, purification, and interaction with phospholipid. The behavior of apoB during its reassociation with phospholipid and the structural features of the DMPC-apoB particle are similar to those observed in the interaction of solubilized membrane proteins with lipid rather than that of other apo-lipoproteins.  相似文献   

20.
M C Carey  J C Montet  D M Small 《Biochemistry》1975,14(22):4896-4905
The colloid/chemical properties of the fusidane antibiotics, 3-acetoxylfusidic acid, cephalosporin P1, and helvolic acid, and their sodium salts, were investigated. The sodium salts of 3-acetoxylfusidic acid and cephalosporin P1 were found to be detergent-like molecules with micellar properties comparable to the parent compound sodium fusidate and the bile salt sodium cholate. Critical micellar temperatures (cmt) were less than 0 degrees C except for sodium helvolate which being sparingly soluble did not form micelles between 0 and 50 degrees C. Potentiometric titrations of dilute solutions gave apparent pK values (5.2-6.5) in the range expected for carboxylated steroid detergents. The apparent pK values increased significantly once the detergent concentration exceeded the critical micellar concentration (cmc). Micellar properties were determined by surface tension, titration with a water-soluble dye (Rhodamine 6G), light scattering, and solubilization of lecithin and cholesterol. Cmc's, in the range of 1.5 to 5.6 mM, were found which varied slightly depending on the method employed and in all cases fell slightly in the presence of added NaCl. The number of monomers per micelle (aggregation number) in concentrations well above the cmc was extrapolated from Debye light scattering plots in 0.15 M NaCl. The values varied from 6 for fusidate to 14 for 3-acetoxylfusidate with sodium cephalosporin P1 having an intermediate value. Each detergent readily solubilized the phospholipid lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号