首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Killer immunoglobulin-like receptors (KIRs) regulate the activity of NK and T cells through interaction with specific HLA class I molecules on target cells. To date, 16 KIR genes and pseudogenes have been identified. Diversity in KIR gene content and KIR allelic and haplotype polymorphism has been observed between different ethnic groups. Here, we present data on the KIR gene distribution in Pacific Islands populations. Sixteen KIR genes were observed in Pacific Islands populations from the Cook Islands, Samoa, Tokelau, and Tonga. The majority of KIR genes were present at similar frequencies between the four populations with KIR2DL4, KIR3DL2, and KIR3DP1 genes observed in all individuals. Commonly observed KIR genes in Pacific Islands populations (pooled frequencies) were KIR2DL1 (0.77), KIR2DL3 (0.77), KIR3DL1 (0.65), KIR3DL3 (0.93), KIR2DS4/1D (0.78), and KIR2DP1 (0.82), compared to the less-frequently observed KIR2DL2 (0.27), KIR2DL5 (0.30), KIR2DS1 (0.19), KIR2DS2 (0.27), KIR2DS3 (0.16), KIR2DS5 (0.17), and KIR3DS1 (0.18) genes. Differences in KIR gene frequency distributions were observed between the Pacific Islands populations and when compared to other populations. Sixty-nine different genotypes were identified, with five genotypes accounting for more then 50% of all genotypes observed. The number of genotypes observed in each population was similar in the Cook Islands, Samoan, and Tokelauan populations (19, 18, and 19, respectively), but 26 different genotypes were observed in Tongans. The putative haplotype A was predominantly observed over haplotype B in all Pacific Islands populations. Significant linkage disequilibrium was observed for a number of KIR gene pairs.  相似文献   

3.
Interaction between killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands influences the innate and adaptive immune response to infection. The KIR family varies in gene content and allelic polymorphism, thereby, distinguishing individuals and populations. KIR gene content was determined for 230 individuals from three Amerindian tribes from Venezuela: the Yucpa, Bari and Warao. Gene-content haplotypes could be assigned to 212 individuals (92%) because only five different haplotypes were present—group A and four group B. Six different haplotype combinations accounted for >80% of individuals. Each tribe has distinctive genotype frequencies. Despite few haplotypes, all 14 KIR genes are at high frequency in the three tribes, with the exception of 2DS3. Each population has an even frequency of group A and B haplotypes. Allele-level analysis of 3DL1/S1 distinguished five group A haplotypes and six group B haplotypes. The high frequency and divergence of the KIR haplotypes in the Amerindian tribes provide greater KIR diversity than is present in many larger populations. An extreme case being the Yucpa, for whom two gene-content haplotypes account for >90% of the population. These comprise the group A haplotype and a group B haplotype containing all the KIR genes, except 2DS3, that typify the group B haplotypes. Here is clear evidence for balancing selection on the KIR system and the biological importance of both A and B haplotypes for the survival of human populations.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
The KIR gene cluster exhibits a high degree of polymorphism in terms of gene content as well as allelic polymorphism, and data suggest that it is evolving rapidly. The KIR3DL1 locus is one of the most polymorphic loci within this cluster and is unique in that it encodes an activating receptor KIR3DS1, as well as multiple inhibitory KIR3DL1 allotypes. Because KIR3DS1 has been implicated in a number of diseases, we tested for the presence of KIR3DS1 variants that might affect its expression and activating capacity. Preliminary FACS analysis indicated that indeed some individuals with the KIR3DS1 allele showed no cell surface expression of the molecule. Sequencing analysis identified a variant with a complex deletion/substitution mutation in exon 4 (which encodes the D1 extracellular domain), resulting in a premature stop codon. We subsequently genotyped 3,960 unrelated individuals and determined the frequencies of this allele across geographically distinct world populations. The data indicate that the null KIR3DS1 allele is uncommon, arose on a single haplotype, and spread across geographically distinct populations. An erratum to this article can be found at  相似文献   

5.
Background:The pathophysiology underlying the progression and development of autoimmune conditions, such as Rheumatoid Arthritis (RA), is a result of dysregulations of the immune system. Research has explored the genetic alterations present in RA; however, limited studies have examined the role of Killer cell Immunoglobulin-like Receptors (KIR) and Human Leukocyte Antigen (HLA) molecules in RA. Therefore, the aim of this study was to examine KIR genes, their HLA ligands, and KIR-HLA compounds in patients with RA.Methods:In this case-control study, a total of 50 patients with RA and 100 healthy individuals were enrolled. DNA samples were evaluated using PCR with sequence specific Primers (PCR-SSP). Odds ratio (OR) with a 95% confidence interval (CI) were reported.Results:Among the KIR genes examined, KIR2DLA (p= 0.0255, OR= 0.389, 95% CI= 0.210-0.722) and KIR2DS4-full (p< 0.0001, OR= 6.163, 95% CI= 3.174-11.968) were observed to have a statistically significant correlation with disease susceptibility to RA. As an inhibitory gene, KIR2DLA was observed to have a protective effect against RA while KIR2DS4-full as an activating gene, was found to increase risk for RA. No significant associations were found between any of the other KIR genotypes, HLA ligands, or KIR-HLA compounds examined in this study to RA susceptibility. Conclusion:In this study of RA in the Lur population of Iran, KIR2DS4-full was observed to increase susceptibility to RA, while KIR2DL5A was found to act as a protecting factor based on both the cross Table and regression analyses. Further research should focus on repeating this study in additional populations.Key Words: HLA, KIR, NK cells, Rheumatoid Arthritis  相似文献   

6.
Killer cell immunoglobulin-like receptor (KIR) genes are expressed by natural killer cells and encoded by a family of genes exhibiting considerable haplotypic and allelic variation. HLA-C molecules, the dominant ligands for KIR, are present in all individuals and are discriminated by two KIR epitopes, C1 and C2. We studied the frequencies of KIR genes and HLA-C1 and C2 groups in a large cohort (n?=?492) from Kampala, Uganda, East Africa and compared our findings with published data from other populations in sub-Saharan Africa (SSA) and several European populations. We find considerably more KIR diversity and weaker linkage disequilibrium in SSA compared to the European populations and describe several novel KIR genotypes. C1 and C2 frequencies were similar to other SSA populations with a higher frequency of the C2 epitope (54.9 %) compared to Europe (average 39.7 %). Analysis of this large cohort from Uganda in the context of other African populations reveals variations in KIR and HLA-C1 and C2 that are consistent with migrations within Africa and potential selection pressures on these genes. Our results will help understand how KIR/HLA-C interactions contribute to resistance to pathogens and reproductive success.  相似文献   

7.
By interacting with polymorphic HLA class I molecules, the killer cell immunoglobulin-like receptors (KIR) influence the innate and adaptive immune response to infection. The KIR family varies in gene content and sequence polymorphism, thereby, distinguishing individuals and populations. To investigate KIR diversity in the earliest settlers of India, we have characterized the KIR gene content in three Dravidian-speaking populations (Mollukurumba, Kanikar, and Paravar) from the state of Tamil Nadu, southern India. The activating KIR genes and putative group-B KIR haplotypes were frequent in Paravar and Kanikar, a scenario analogous to those seen previously in other populations of Indian origin, indicating that predominance of group-B KIR haplotypes is the characteristic feature of Indian populations. In contrast, the KIR gene profile of Mollukurumba was more related to Caucasian type. It is not clear whether a local-specific selection or a recent admixture from Iran is responsible for such discrete profile in Mollukurumba. Each southern Indian population had distinct KIR genotype profile. Comparative analyses with world populations revealed that group-B KIR haplotypes were frequent in the natives of India, Australia, and America, the populations associated with those involved in extensive prehistoric human migrations. Whether or not natural selection has acted to enrich group-B KIR haplotypes in these migratory descendants is an issue that requires objective testing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Lee YC  Chan SH  Ren EC 《Immunogenetics》2008,60(11):645-654
Killer cell immunoglobulin-like receptors (KIR) gene frequencies have been shown to be distinctly different between populations and contribute to functional variation in the immune response. We have investigated KIR gene frequencies in 370 individuals representing three Asian populations in Singapore and report here the distribution of 14 KIR genes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1) with two pseudogenes (2DP1, 3DP1) among Singapore Chinese (n = 210); Singapore Malay (n = 80), and Singapore Indian (n = 80). Four framework genes (KIR3DL3, 3DP1, 2DL4, 3DL2) and a nonframework pseudogene 2DP1 were detected in all samples while KIR2DS2, 2DL2, 2DL5, and 2DS5 had the greatest significant variation across the three populations. Fifteen significant linkage patterns, consistent with associations between genes of A and B haplotypes, were observed. Eighty-four distinct KIR profiles were determined in our populations, 38 of which had not been described in other populations. KIR haplotype studies were performed using nine Singapore Chinese families comprising 34 individuals. All genotypes could be resolved into corresponding pairs of existing haplotypes with eight distinct KIR genotypes and eight different haplotypes. The haplotype A2 with frequency of 63.9% was dominant in Singapore Chinese, comparable to that reported in Korean and Chinese Han. The A haplotypes predominate in Singapore Chinese, with ratio of A to B haplotypes of approximately 3:1. Comparison with KIR frequencies in other populations showed that Singapore Chinese shared similar distributions with Chinese Han, Japanese, and Korean; Singapore Indian was found to be comparable with North Indian Hindus while Singapore Malay resembled the Thai. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
There has been an explosion in population studies determining the frequency of KIR genes. However, there is still limited knowledge of allele and haplotype frequencies in different populations. The present study aims to determine the haplotype frequencies using allele information on ten genes and presence/absence of the other seven genes in the parents of 77 families. There were 26 of 154 different genotypes without using allele information and 143 of 154 different genotypes using allele information. These genotypes came from 96 of 308 different haplotypes. Of these, 41 were A and 55 were B. Forty-nine haplotypes occurred only once. In total, 181 (58.8%) of haplotypes were A and 127 (41.2%) were B. Three different haplotypes carried two copies of KIR2DL4, two different haplotypes were truncated with both KIR2DL4 and KIR3DL1/S1 missing, and three different haplotypes were negative for both KIR2DL2 and KIR2DL3; two of these haplotypes carried KIR2DS2. A further haplotype, present in two individuals, appeared to have two alleles of KIR2DL5A present. The percentages of individuals who were homozygous for the A haplotype, heterozygous for the A and B haplotype and homozygous for the B haplotype were 35.1%, 47.4% and 17.5% respectively. The genes KIR3DL1, KIR2DS4 and KIR2DL3 were present on 31, 32 and 15 different B haplotypes, respectively, and 64, 65 and 40 of the total B haplotypes, respectively. Sixty B haplotypes had both KIR3DL1 and KIR2DS4, and four haplotypes had KIR2DS4 and KIR2DL3. However, in 40 of 41 different and 180 of 181 total A haplotypes, KIR3DL1, KIR2DS4 and KIR2DL3 were all present (we did not allele-type for KIR2DL1 and therefore could not determine presence/absence on those haplotypes). At the allele level, homozygosity was found in 22.1%, 9.7% and 12.6% for KIR2DL4, KIR3DL2 and KIR3DL1 genes, respectively, but 62.6% and 53% for KIR2DL3 and KIR2DS4 genes, respectively, despite the fact that no one allele dominated the frequency in any of these genes.  相似文献   

10.
Killer cell immunoglobulin-like receptors (KIRs) are cell surface receptors on natural killer (NK) cells and subsets of T cells. The functions of NK cells are partly regulated by interactions between KIRs and HLA ligands on target cells. In this study, the presence or absence of 17 KIR genes and their known HLA ligands have been investigated in 235 unrelated individuals living in northeastern Thailand (NET). Subtypes of KIR2DS4 including full length (KIR2DS4F) and deleted forms (KIR2DS4D) have also been determined. Framework genes (KIR2DL4, 3DL2, 3DL3, and 3DP1) were found in all individuals and KIR genes belonging to the A haplotype (KIR2DL1, 2DL3, 3DL1, and 2DS4) were present in more than 90 % of NET. KIR2DS4D (61.7 %) was more common than KIR2DS4F (52.8 %). A total of 33 different KIR genotypes were observed. Of these, three new genotypes were identified. The most common genotype (AA) was observed in 35.7 % of NET, and HLA-C alleles bearing the C1 epitope (HLA-C1) had the highest frequency (97 %). All individuals had at least one inhibitory KIR and its corresponding HLA ligand; 40.9 % of NET had three pairs of receptor–ligand combinations, and 18.3 % had all three receptor–ligand combinations of KIR2DL3+C1, 3DL1+Bw4, and 3DL2+A11. Surprisingly, the patterns of KIR gene frequencies in NET are more similar to those of Caucasians than Japanese, Korean, and Chinese. This is the first report on complete analysis of KIR and known HLA ligands in Thais. These data provide basic knowledge on KIR for further studies on disease associations and transplantation in northeastern Thais.  相似文献   

11.
The importance of innate immunity in malaria has been suggested for early protection from maturation and multiplication of Plasmodium parasites injected via infected mosquitoes. In this study, the killer cell immunoglobulin-like receptor (KIR) genes in innate immunity were investigated for an association with malaria in the comparison between Plasmodium-positive and Plasmodium-negative Melanesian individuals in the Solomon Islands, one of the most hyperendemic malaria regions in the world. The higher frequency of a pair of KIR3DL1 and KIR2DS4 was observed in the Plasmodium-positive individuals, which led to the investigation of KIR3DL1/S1 genotypes in concert with KIR2DS4 allelic variants. The positive individuals showed the highest frequency of KIR3DL1/KIR3DS1 heterozygosity, which might suggest the masking of activating KIR3DS1 by inhibitory KIR3DL1 at allelic levels to maintain the KIR3DS1-driven activation of natural killer cells diminished in controlling Plasmodium proliferation. The extended analysis with A/B genotypes further revealed the trend of parasitic positive individuals to be KIR3DL1/KIR3DS1 heterozygous in pair with KIR2DS4 nondeleted variants in a set of KIR genes inheritable as the AB genotypes. To the best of our knowledge, this study is the first KIR investigation of the malaria-infected population, which strengthened the potential associations of KIR with malaria pathogenesis. The balance of inhibitory and activating KIR3D genes (KIR3DL1/S1) and membrane-bound or secreted status of KIR2DS4 alleles in the interaction with the other KIR genes in the AB genotypes might constitute a part of KIR characteristics to determine resistance or susceptibility to Plasmodium parasitic infection.  相似文献   

12.

Background

Recipient NK cells may detect the lack of recipient''s (i.e., self) HLA antigens on donor renal tissue by means of their killer cell immunoglobulin-like receptors (KIRs). KIR genes are differently distributed in individuals, possibly contributing to differences in response to allogeneic graft.

Methodology/Principal Findings

We compared frequencies of 10 KIR genes by PCR-SSP in 93 kidney graft recipients rejecting allogeneic renal transplants with those in 190 recipients accepting grafts and 690 healthy control individuals. HLA matching results were drawn from medical records. We observed associations of both a full-length KIR2DS4 gene and its variant with 22-bp deletion with kidney graft rejection. This effect was modulated by the HLA-B,-DR matching, particularly in recipients who did not have glomerulonephritis but had both forms of KIR2DS4 gene. In contrast, in recipients with glomerulonephritis, HLA compatibility seemed to be much less important for graft rejection than the presence of KIR2DS4 gene. Simultaneous presence of both KIR2DS4 variants strongly increased the probability of rejection. Interestingly, KIR2DS5 seemed to protect the graft in the presence of KIR2DS4fl but in the absence of KIR2DS4del.

Conclusions/Significance

Our results suggest a protective role of KIR2DS5 in graft rejection and an association of KIR2DS4 with kidney rejection, particularly in recipients with glomerulonephritis.  相似文献   

13.

Background

HLA class I molecules are ligands for killer cell immunoglobin like receptors (KIR) that control the antiviral response of natural killer (NK) cells. However, the effects of KIR and HLA (KIR/HLA) alleles on HIV disease of children have not been studied.

Methods

993 antiretroviral naïve children with symptomatic HIV infection from PACTG protocols P152 and P300 were genotyped for KIR and HLA alleles using the Luminex platform. Linear regression was used to test the association between genotypes and baseline pre-ART HIV RNA, CD4+ lymphocyte count, and cognitive score, adjusting for age, race/ethnicity and study. The interaction between genetic markers and age was investigated. To account for multiple testing the false discovery rate (FDR) was controlled at 0.05.

Results

Children with the KIR2DS4*ALL FULL LENGTH (KIR2DS4*AFL) allele had higher CD4+ lymphocyte counts. Among children ≤2 years of age, the KIR2DS4*AFL was associated with lower plasma HIV RNA and higher cognitive index scores. KIR Cent2DS3/5_1 had lower CD4+ lymphocyte counts in children ≤2 years of age, while the presence of Tel1, Tel2DS4_2, Tel2DS4_4, Tel8, Tel2DS4_6 had higher CD4+ lymphocyte counts in all children. Presence of Cent2, Cent4 and Cent8 was associated with increased HIV RNA load in children ≤2 years. Presence of KIR3DL1+Bw4 was associated with higher CD4+ lymphocyte counts in all children. Among children >2 years old, KIR3DS1+Bw4-80I was associated with higher plasma HIV RNA, and Bw6/Bw6 was associated with lower plasma HIV RNA compared to children with KIR3DS1+Bw4-80I.

Conclusions

Presented data show for the first time that specific KIR alleles independently or combined with HLA ligands are associated with HIV RNA and CD4+ lymphocyte counts in infected, antiretroviral naive children; and many of these effect estimates appear to be age dependent. These data support a role for specific KIR alleles in HIV pathogenesis in children.  相似文献   

14.
The KIR gene cluster exhibits a high degree of polymorphism in terms of gene content as well as allelic polymorphism, and data suggest that it is evolving rapidly. The KIR3DL1 locus is one of the most polymorphic loci within this cluster and is unique in that it encodes an activating receptor KIR3DS1, as well as multiple inhibitory KIR3DL1 allotypes. Because KIR3DS1 has been implicated in a number of diseases, we tested for the presence of KIR3DS1 variants that might affect its expression and activating capacity. Preliminary FACS analysis indicated that indeed some individuals with the KIR3DS1 allele showed no cell surface expression of the molecule. Sequencing analysis identified a variant with a complex deletion/substitution mutation in exon 4 (which encodes the D1 extracellular domain), resulting in a premature stop codon. We subsequently genotyped 3,960 unrelated individuals and determined the frequencies of this allele across geographically distinct world populations. The data indicate that the null KIR3DS1 allele is uncommon, arose on a single haplotype, and spread across geographically distinct populations.  相似文献   

15.
KIR3DL3 is a framework gene of the Leukocyte Receptor Complex, present in all individuals and haplotypes analysed to date. We describe 17 novel KIR3DL3 alleles, including seven single nucleotide polymorphic (SNP) positions within the coding region. Sequence variation within introns included a VNTR within intron 1. As KIR3DL3 mRNA is known to be expressed in decidual NK cells, we investigated the impact of KIR3DL3 allelic variation on pre-eclampsia. No statistical difference in allele frequency or polymorphism was observed between pre-eclampsia patient and control cohorts. Linkage disequilibrium (LD) analysis of exonic SNPs suggested that recombination may be a mechanism of generating sequence diversity within KIR3DL3. A potential recombination hotspot was located within intron 5. A strong LD was detected between polymorphism in exon 6 of KIR3DL3 and the KIR gene −2DL3 or -2DS2 loci, which define the centromeric end of two main haplotypes (A and B) of the KIR cluster. Comparison of primate KIR sequences indicated that the Ig domains of KIR3DL3 are highly conserved between chimpanzee, gorilla and humans. Investigation of KIR3DL3 dN/dS ratios indicated a greater level of synonymous mutations consistent with purifying selection, although positive selection was detected acting on two sites within the stem region.Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   

17.
KIR2DL5 alleles were physically linked to alleles at adjacent KIR loci to define this region of KIR haplotypes in 55 gene-positive random African Americans. The majority carried KIR2DL5B. Three KIR2DL5A and six KIR2DL5B alleles that have been previously described and 11 novel KIR2DL5 alleles were identified by DNA sequencing. Novel alleles included variation that may impact promoter activity; two alleles carried nonsynonymous coding region variation. Based on linkage with KIR2DS1, KIR2DS3, KIR2DS5, KIR2DL2, KIR2DL3, and KIR3DS1 alleles, seven haplotypes of KIR2DL5A and 23 haplotypes of KIR2DL5B were observed. The phylogenetic relationships among the KIR2DL5 alleles predicted their association with either KIR2DS3 (six alleles) or KIR2DS5 (seven alleles). All of the KIR2DL5A alleles were linked either to KIR3DS1*01301 or KIR3DS1*049N. The majority of the KIR2DL5B alleles were linked to seven KIR2DL2 alleles; two were linked to a novel allele of KIR2DL3. These findings underscore the diversity of KIR haplotypes present in this population.  相似文献   

18.
The aboriginal populations of Peninsular Malaysia, also known as Orang Asli (OA), comprise three major groups; Semang, Senoi and Proto-Malays. Here, we analyzed for the first time KIR gene polymorphisms for 167 OA individuals, including those from four smallest OA subgroups (Che Wong, Orang Kanaq, Lanoh and Kensiu) using polymerase chain reaction-sequence specific primer (PCR-SSP) analyses. The observed distribution of KIR profiles of OA is heterogenous; Haplotype B is the most frequent in the Semang subgroups (especially Batek) while Haplotype A is the most common type in the Senoi. The Semang subgroups were clustered together with the Africans, Indians, Papuans and Australian Aborigines in a principal component analysis (PCA) plot and shared many common genotypes (AB6, BB71, BB73 and BB159) observed in these other populations. Given that these populations also display high frequencies of Haplotype B, it is interesting to speculate that Haplotype B may be generally more frequent in ancient populations. In contrast, the two Senoi subgroups, Che Wong and Semai are displaced toward Southeast Asian and African populations in the PCA scatter plot, respectively. Orang Kanaq, the smallest and the most endangered of all OA subgroups, has lost some degree of genetic variation, as shown by their relatively high frequency of the AB2 genotype (0.73) and a total absence of KIR2DL2 and KIR2DS2 genes. Orang Kanaq tradition that strictly prohibits intermarriage with outsiders seems to have posed a serious threat to their survival. This present survey is a demonstration of the value of KIR polymorphisms in elucidating genetic relationships among human populations.  相似文献   

19.
Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.  相似文献   

20.
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four ‘new’ alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号