首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
On the basis of known sunflower (Helianthus annuus L.) responsesto soil water deficit, it is proposed that the effect of thefungus Verticillium dahliae Klebahn on plant leaf area precedesand is greater than its effect on leaf photosynthesis and stomatalconductance. To test this hypothesis, we measured shoot andleaf area growth, leaf photosynthetic rate, stomatal conductanceand disease symptoms in a field experiment including hybridsof high (Sankol) and low (Dekasol 3900) susceptibility to V.dahliae. Plants inoculated with V. dahliae and controls werecompared. We also investigated the effect of V. dahliae on keycomponents of plant leaf area, leaf expansion and senescence,in inoculated and control plants of Sankol and Toba, a hybridof intermediate susceptibility to V. dahliae. Reduction in plantleaf area caused by V. dahliae was first detected 31 d afterinoculation (DAI), when visual symptoms of disease in inoculatedplants were slight (Sankol) or absent (Dekasol 3900). Reductionin leaf photosynthesis was first observed 66 DAI; stomatal conductanceand leaf dark respiration were both unaffected by V. dahliaeduring the whole experiment. In comparison with controls, V.dahliae reduced seasonal duration of plant leaf area by 25%in Dekalb 3900 and by 55% in Sankol, whereas the average reductionin leaf photosynthetic rate was 9%. In correspondence with thereduction in leaf area duration, inoculation reduced shoot drymatter of mature Sankol by 50%. In both experiments, less leafexpansion accounted for most of the early reduction in plantleaf area; as the disease progressed, increasing senescencealso contributed to reduced plant leaf area. It is concludedthat the response of sunflower to V. dahliae resembled the responseof the plant to soil water deficit: (1) plant leaf area, ratherthan leaf photosynthetic rate, accounted for the reduction ingrowth in mass; and (2) reduced leaf expansion early in theseason and faster leaf senescence in older plants accountedfor the decrease in plant leaf area. Copyright 2000 Annals ofBotany Company Helianthus annuus, Verticillium dahliae, allometry, apical dominance, drought, leaf expansion, leaf senescence, photosynthesis, stomatal conductance, growth  相似文献   

2.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

3.
The wildtype leaf of the garden pea possesses proximal pairsof leaflets and distal pairs of tendrils in the blade region.Theafila (af) mutation causes leaflets to be replaced by compound(branched) tendrils. We characterized the morphological variationin leaf form along the plant axis and leaf development in earlyand late postembryonic leaves onafilaplants to infer the roleof theAfgene. Leaf forms are more diverse early in shoot ontogenyonafilaplants.Afinfluences pinna length and pinna branchingin addition to pinna type. Pinna initiation in the proximalregion ofafilaleaf primordia is basipetal and delayed comparedto wildtype plants. In addition, pinna development in the proximalregion ofafilaleaves occurs for a longer period of time thanon wildtype leaf primordia. Therefore,Afregulates the timingand direction of leaf developmental processes in the proximalregion of the leaf, but has little effect on the distal region.These data support the heterochronic model of pea leaf morphogenesisproposed by Luet al. (International Journal of Plant Science157:311–355, 1996).Copyright 1999 Annals of Botany Company. afila,Fabaceae, garden pea, heterochrony, leaf morphogenesis,Pisum sativum.  相似文献   

4.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

5.
IMAICHI  RYOKO 《Annals of botany》1989,63(2):249-256
The morphogenesis of the leaf sheath was studied in Botrychiumstrictum and B. virginianum of subgenus Osmundopteris. In thetwo species, the leaf primordium is initiated on the lowestpart of a ridge which is formed by partial growth of the shootapex. The leaf primordium first grows to cover the shoot apexalmost entirely except for a slit-like opening. The openingis formed by the frontal rim of the growing leaf primordium,i.e. the leaf margin, and the rear part of the shoot apex. Asthe leaf grows, the leaf margin elongates and takes a reverseV-shape. On both lateral edges of the leaf margin, marginalgrowth occurs to form the lobes of the leaf sheath. Such marginalgrowth and a small amount of growth on the uppermost portionof the sheath is involved in the leaf sheath formation in B.cirginianum, while only marginal growth takes place in B. strictum.The leaf sheath of Botrychium virginianum, in comparison tothat of B. strictum, has a morphogenesis which is more similarto the completely covering leaf sheath of subgenera Botrychiumand Sceptridhim. Based on the morphogenesis of the leaf sheath,systematic relationships in subgenus Osmundopteris are discussed Botrychium virginianum, B. strictum, subgenus Osmundopteris, leaf ontogeny, leaf sheath formation, scanning electron microscopy, light microscopy  相似文献   

6.
High soil resistance to root penetration (measured as penetrometerresistance, Rs slows down leaf growth and reduces mature leafsize in wheat seedlings {Triticum aestivum L.). Underlying changesin the kinetics of cell partitioning and expansion and in thesize and organization of mature cells were reported in companionpapers (Beemster and Masle, 1996; Beemster et al., 1996). Inthe present study, the relationships between apex growth, primordiuminitiation and expansion were analysed for plants grown at contrastingRs, focusing on a leaf whose whole development proceeded afterthe onset of root impedance (leaf 5). High Rs reduced the rates of apex and leaf development, butdid not appear to have immediate effects on the pattern of developmentof the newly initiated phytomers. During an initial short period,the rate of development of a leaf primordium and associatednode were related to plastochronic age, according to similarrelationships (slopes) at the two Rs. Effects on developmentalpatterns were first detected on phytomer radial expansion duringplastochron 2. The ontogenetic pattern of leaf elongation wasaffected later, during the next few plastochrons preceding leafemergence (‘post-primordial stage’). It is concludedthat a reduction in the number of formative divisions and inthe number of proliferative cells along the intercalary mer-istemreported earlier (Beemster and Masle, 1996; Beemster et al.,1996) is not related to the size of the apical dome at leafinitiation nor to the size and number of meristematic cellsinitially recruited to the leaf primordium, which were all unaffectedby Rs. Rather they are generated at the primordial and post-primordialstages. Key words: Wheat, apex development, leaf primodium development, mature leaf width, root impedance  相似文献   

7.
The effect of development on leaf elongation rate (LER) andthe distribution of relative elemental growth rate (REGR), epidermalcell length, and xyloglucan endotransglycosylase (XET) activitythrough the growing zone of the third leaf of maize was investigated.As the leaf aged and leaf elongation slowed, the length of thegrowing zone (initially 35 mm) and the maximal REGR (initially0.09 mm mm–1 h–1) declined. The decline in REGRwas not uniform through the growth profile. Leaf ageing sawa maintenance of REGR towards the base of the leaf. Epidermalcell size was not constant at a given position in the growingzone, but was seen to increase as the leaf aged. There was apeak of XET activity close to the base of the growing zone.The peak of XET activity preceded the zone of maximum REGR.XET activity declined as leaves aged and their elongation rateslowed. When leaf elongation was complete a distinct peak ofXET activity remained close to the base of the leaf. Key words: Leaf elongation rate (LER), relative elemental growth rate (REGR), xyloglucan endotransglycosylase (XET)  相似文献   

8.
The second leaf of wheat was used as a model system to examinethe effects of the Rht3 dwarfing gene on leaf growth. Comparedto the rht3 wild type, the Rht3allele decreased final leaf length,surface area and dry mass by reducing the maximum growth rates,but without affecting growth duration. Gibberellic acid (GA3)increased final leaf length and maximum growth rate in the rht3wild type, but was without effect on the Rht3 mutant, whichis generally regarded as being non-responsive to gibberellin(GA). Paclobutrazol, an inhibitor of GA biosynthesis, decreasedfinal leaf length and maximum growth rate in the rht3 wild typeto values similar to those in the untreated Rht3 mutant. NeitherGA3 nor paclobutrazol affected the duration of leaf growth.The decrease in leaf length was produced by reduction of celllength rather than cell number. The maximum relative elementalgrowth rate (REGR) for cell extension was essentially the samein all treatments, as was the time between the cells leavingthe meristem and achieving maximum extension rate. The differencesbetween the genotypes and treatments were all almost entirelydue to differences in the time taken from the attainment ofmaximum REGR of cell extension to the cessation of extension.This was reflected in the length of the extension zone, whichwas approximately 6–8 per cent of final leaf length. Theeffects of the Rht3 allele, GA3 and paclobutrazol all appearto be on the processes which promote the cessation of cell elongation. Key words: Cell extension, gibberellin, leaf growth, Rht3 gene, Triticum, wheat  相似文献   

9.
Growth performances of Crotalaria juncea L. and C. sericea Retz.have been compared at two controlled temperatures, 16–20°C, and 28–32 °C, with respect to increase ind. wt and leaf area, relative growth rate, leaf area ratio,specific leaf area, leaf weight ratio, net assimilation rate,the ratio of mean relative growth rate to mean relative rateof leaf area increase () and shoot/root ratios. Both the speciesgrew better at the higher temperature; however the relativegrowth rate was more affected by temperature in C. sericea thanin C. juncea. Further, it was observed to be more dependenton net assimilation rate than on the leaf area ratio. Crotalaria juncea L., Crotalaria sericea Retz., relative growth rate, leaf area ratio, specific leaf area, leaf weight ratio, leaf area increase, net assimilation rate, shoot/root ratio  相似文献   

10.
Guye, M. G, Vigh, L. and Wilson, J. M. 1987. Recovery afterchilling: an assessment of chill-tolerance in Phaseolus spp.—J.exp. BoL, 38: 691–701. The chill-sensitivity of three Phaseolus spp. (eight cultivars)was assessed by measuring five different physiological parameters(leaf pigment loss, leaf diffusion resistance, relative growthrate recovery, change in leaf water content and the severityof leaf necrosis) on return to the warmth (23 ?C/18 ?C) followinga brief but severe chilling treatment (24 h at 5 ?C). In thisway the genotypes could be ranked in order of increasing chill-sensitivityas follows: P. coccineus cvs Prizewinner and Streamline, P.vulgaris cv. 251 < P. vulgaris cvs 194, 222 and Seafarer< P. vulgaris cv. Tendergreen < P. aweus cv. Berken. Key words: Chill-tolerance ranking, chlorophyll, leaf diffusion resistance, leaf water content, growth rate, carotenoid, Phaseolus  相似文献   

11.
The Effect of Temperature on Leaf Appearance in Rice   总被引:10,自引:3,他引:10  
Temperature is the principal environmental determinant of cropleaf appearance. The objective of this study is to analyse whetherthere are different effects of day temperature (TD) and nighttemperature (TN) on main-stem leaf appearance in rice (OryzasativaL.). Plants of 12 rice cultivars were grown at five constant temperatures(22, 24, 26, 28 and 32 °C) and four diurnally fluctuatingtemperatures (TD/TN: 26 /22, 30 /22, 22 /26 and 22 /30 °C)with a constant photoperiod of 12hd-1. The leaf appearance onthe main stem was measured. A constant change in leaf appearance rate was observed duringontogeny. The relation between the number of emerged leavesand days from seedling emergence was described by a power-lawequation with only one cultivar-specific parameter. Values forthis parameter were estimated for the five constant temperaturetreatments, and the relation between this parameter and temperaturewas quantified by a nonlinear model. Leaf appearance for thefour fluctuating temperature treatments could be accuratelypredicted on the basis of these relations in each cultivar.This indicated that there were no specific effects ofTDandTNonleaf appearance in rice, in contrast with phenological developmentto flowering. The optimum temperature for leaf development wasfound to be substantially higher than for development to flowering. The final main-stem leaf number differed with diurnal temperatureconditions. When a diurnal temperature delayed flowering, itincreased the leaf number as well. This might explain whyTDandTNhada different effect on development to flowering but not on leafdevelopment. Oryza sativa; rice; leaf appearance; leaf number; day and night temperature  相似文献   

12.
Leaf age effects on the leaf conductance to water vapour diffusionof the adaxial and abaxial leaf surfaces were measured in themorning and in the afternoon on 17 different plantain and banana(Musa spp.) genotypes. The irradiance levels increased three-foldwhile leaf to air vapour pressure deficit levels increased two-to four-fold from morning to afternoon during the sampling periodin a field site located in the humid forest-moist savanna transitionzone of Nigeria. Conductance values were reduced in older, andsenescing leaves relative to the young and mature leaves bothin the morning and in the afternoon. Conductances were higherfor the abaxial leaf surfaces than the adaxial surface and higherin the afternoon than in the morning, with some genotypic differences.Lower values of leaf conductance to water vapour in the afternoonunder a short dry spell was sufficiently variable (P 0·05)among the test genotypes to indicate potential adaptation totransient dry conditions. Differential and relative leaf conductanceadjustments were noted among genotypes experiencing a shortdry spell versus non-limiting soil moisture conditions. Significantgenotypic differences were observed for leaf conductance amongthe 17 genotypes during the afternoon on the lower leaf surfaceof younger leaves. ABB cooking banana cultivars 'Fougamou' and'Bluggoe' might be potentially promising cultivars for transientdry conditions while AAB plantain 'Bobby Tannap' and one ofits hybrids TMPx 582-4 could be very sensitive to short dryspells according to this evaluation.Copyright 1994, 1999 AcademicPress Musa spp., Musa hybrids, adaxial leaf surface, abaxial leaf surface, stomatal response  相似文献   

13.
A sequential study describing the content (%) of alkaloids inleaves of Erythroxylum coca var. coca Lam. from leaf bud developmentto leaf drop has not previously been conducted. The length oftime the leaf resides on the plant and its concurrent metabolicactivity also has not been defined. In the present study, cocaine,methyl ecgonine, hygrine, tropinone, trans -cinnamoylcocaine,cis-cinnamoylcocaine, tropacocaine and cuscohygrine were monitoredto determine: (1) their content and patterns of accumulationfrom leaf bud to leaf drop; (2) the time leaves resided on theplant; and (3) whether leaves were metabolically active untilleaf drop. E. coca plants were grown in a controlled environmentfor 37 months. Leaves similar in chronological age were extractedand analysed for alkaloid content by gas chromatography (GC)and gas chromatography/mass spectrometry (GC/MS). Cocaine washighest in 7 d old rolled leaves (0·75%) and declinedto 0·39% at leaf drop. Cocaine, methyl ecgonine, hygrine,tropinone, trans -cinnamoylcocaine, cis-cinnamoylcocaine, cuscohygrineand tropacocaine content in 35 d old (mature) leaves was 0·61,0·59, 0·68, 0·08, 0·31, 0·55,0·52, and 0·05%. respectively. Cocaine, methylecgonine, hygrine, cis -cinnamoylcocaine, and cuscohygrine displayeda gradual decline from week 2 to week 36 of leaf duration. Tropinoneand tropacocaine were the least abundant of the alkaloids monitored.Cis-cinnamoylcocaine content exceeded cocaine at week 12, 16,and weeks 19 to 23 of leaf duration. Trans -cinnamoylcocainewas highest in rolled leaves (week 1) and in expanded leavesafter week 30. The monitored alkaloids appeared to be part ofthe metabolically active pool of the leaf. Leaves remained onthe E. coca plants for 36 weeks.Copyright 1994, 1999 AcademicPress Cocaine, methyl ecgonine, hygrine, tropinone, trans-cinnamoylcocaine, cis-cinnamoylcocaine, cusco-hygrine, tropacocaine, leaf bud, rolled leaves, expanded leaves, alkaloids, patterns, fluctuation, Erythroxylum coca var. coca, E, coca  相似文献   

14.
Variety of responses of plant phenolic concentration to CO2 enrichment   总被引:1,自引:0,他引:1  
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

15.
16.
Growth of Individuals in Plant Populations   总被引:2,自引:1,他引:1  
Relationships between individual plant weight and net photosynthesisper day (G(t, x) function of plant weight) in plant populationsof various stand structures were simulated based on a canopyphotosynthesis model. The G(t, x) functions of plant weightare determined mainly by LAI (leaf area index), the relationshipbetween individual plant weight and leaf area, canopy structureand extinction coefficient. The concave relationship betweenindividual plant weight and leaf area at small LAI (<2),at small extinction coefficient (< 0.5), or at the canopystructure having the maximum leaf area density at the bottomproduces a concave G(t, x) function, which generates negativeskewness of plant weight. The linear relationship between individualplant weight and leaf area at large LAI (> 2) produces aconvex G(t, x) function, which generates positive skewness ofplant weight. These simulation results coincide with G(t, x)functions obtained experimentally and with the well-known phenomenonof stand dynamics in which skewness of plant weight becomesnegative in the early growth stage and then increases to a positivevalue as a stand grows and becomes crowded. Helianthus annuus L., individual plant size, mean growth rate, canopy photosynthesis model, skewness, stand structure  相似文献   

17.
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

18.
The response of leaf area expansion to atmospheric saturationdeficit (SD) and soil moisture deficit was examined in termsof leaf water potential (1) and turgor potential (p), as partof a wider study of the effects of SD on groundnut growth. Standsof plants were grown at four levels of SD and without irrigationin controlled environment glasshouses. A fifth stand was grownat low SD on soil kept irrigated to field capacity. Large saturation deficits accelerated the depletion of soilmoisture reserves in the unirrigated stands and greatly reducedleaf area index, particularly in the driest treatment. Leafnumber per plant and leaf size both decreased as SD increased,but the effect on leaf size was greater than on number. SD hadless effect than soil water deficit on leaf production. Turgorpotential and leaf extension rate (R) were both reduced at highsaturation deficits and R was linearly related to p between0900 and 1600 h. However, leaf extension rate and turgor potentialwere poorly correlated between 0400 and 0700 h in the driesttreatment. Arachis hypogaea L., groundnut, saturation deficit, leaf growth, canopy development  相似文献   

19.
SASAHARA  T. 《Annals of botany》1982,50(4):491-497
The leaf mesophyll of Triticum and Aegilops is constructed fromcells with one to ten arms. Volume of mesophyll cells per unitleaf area was larger in some monogenomic (A and B genome) plantsthan in polyploids, while leaf volume per unit leaf area wassmaller in the former than in the latter. Consequently, thecompactness of leaf blade is higher in these monogenomic plantsthan in the polyploids. D genome plants showed a much lowervolume of both mesophyll cells and leaf blade per unit leafarea, but the compactness of the leaf blade was generally higherthan in the polyploids. Mesophyll surface area per unit leaf area tended to be largerin the A and B genome than in the D genome and polyploid plants.Out of the polyploids, AB genome plants showed a larger mesophyllsurface area per unit leaf area as compared with AG and ABDgenome plants. Therefore, either the D or the G genome seemsto have the effect of decreasing the mesophyll surface areaper unit leaf area. A decrease of the compactness of leaf bladeand the mesophyll surface area per unit leaf area in the polyploidswas considered to be associated with the reduction of theirphysiological activities on the unit leaf area basis. Triticum, Aegilops, wheat, mesophyll surface area, leaf anatomy, genome, photosynthesis  相似文献   

20.
Four upland and two lowland varieties were grown on floodedand dry soil in pots in a glasshouse. Photosynthetic rate (P),transpiration rate (T), and water content (W) of the secondexpanded leaf from the top of the main stem were measured undercontrolled aeration and illumination in a leaf chamber in thelaboratory, together with leaf area (La), dry matter content(DM), nitrogen content (N), stomatal frequency (Sf), and totalvessel cross-sectional area at the base of the leaf blade (Va).P/La was positively related to T/La and Sf/La among six varietieswhen they were grown on flooded soil. IR 8, a semidwarf indicalowland variety, showed the highest P/La with the highest Sf/Laand T/La. When grown on dry soil P/La was positively correlatedwith W/DM, the latter being negatively related to T/Va. Twoupland varieties, African Moroberekan and Brazilian IAC 1246,showed the highest P/La on dry soil, keeping a higher W/DM witha lower T/La and a lower T/Va. Daytime leaf diffusive conductance(l/rL) and leaf water potential (L) measured on the same orthe same stage leaf in the glasshouse were positively correlatedwith the W/DM measured in the laboratory among varieties grownon dry soil. Simultaneous observation of P, T and W in the laboratoryindicated nonstomatal reduction in P/La due to leaf water deficitin sensitive varieties, although these varieties also showeda markedly lower daytime l/rL in the glasshouse as comparedwith resistant varieties. Oryza sativa L., rice, drought resistance, photosynthesis, transpiration, water deficit, stomatal frequency, vessel size  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号