首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NuCOTN 33B, a Bt transgenic variety of upland cotton (Gossypium hirsutum L.) expressing the insecticidal protein Cry1Ac from Bacillus thuringiensis Berliner sp. kurstaki, was evaluated for resistance to Helicoverpa armigera (Hübner) during 1998-2000 in northern China. The results indicated that there was no significant difference in egg densities between NuCOTN 33B and three nontransgenic varieties (DP5415, Zhongmian12, and Shiyuan321) during the season, although the survival of larvae on NuCOTN 33B seemed significantly reduced. High larval densities observed on non-Bt cotton appeared in great contrast to the low larval populations observed on NuCOTN 33B plants during the seasons. In an environment without insecticide sprays, the annual ginned cotton yields in NuCOTN 33B plots, ranging from 1391.17 to 1511.35 kg/ha, were significantly higher than those in non-Bt cotton (340.34-359.58 kg/ha). These high levels of field efficacy for NuCOTN 33B against H. armigera in northern China may pave the way for reduced pesticide applications and an expansion of alternative pest-control strategies.  相似文献   

2.
Three laboratory strains of Helicoverpa armigera (Hübner) were established by mating of field-collected insects with an existing insecticide-susceptible laboratory strain. These strains were cultured on artificial diet containing the Cry1Ac protoxin of Bacillus thuringiensis using three different protocols. When no response to selection was detected after 7-11 generations of selection, the three strains were combined by controlled mating to preserve genetic diversity. The composite strain (BX) was selected on the basis of growth rate on artificial diet containing Cry1Ac crystals. Resistance to Cry1Ac was first detected after 16 generations of continuous selection. The resistance ratio (RR) peaked approximately 300-fold at generation 21, after which it declined to oscillate between 57- and 111-fold. First-instar H. armigera from generation 25 (RR = 63) were able to complete their larval development on transgenic cotton expressing Cry1Ac and produce fertile adults. There appeared to be a fitness cost associated with resistance on cotton and on artificial diet. The BX strain was not resistant to the commercial Bt spray formulations DiPel and XenTari, which contain multiple insecticidal crystal proteins, but was resistant to the MVP formulation, which only contains Cry1Ac. The strain was also resistant to Cry1Ab but not to Cry2Aa or Cry2Ab. Toxin binding assays showed that the resistant insects lacked the high affinity binding site that was detected in early generations of the strain. Genetic analysis confirmed that resistance in the BX strain of H. armigera is incompletely recessive.  相似文献   

3.
Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.  相似文献   

4.
The performance of Helicoverpa armigera (Hübner) on 15-wk-old cotton plants was compared for a susceptible strain, a near-isogenic laboratory-selected strain, and F1 progeny of the two strains. Glasshouse experiments were conducted to test the three insect types on conventional plants and transgenic plants that produced the Bacillus thuringiensis (Bt) toxin Cry1Ac. At the time of testing (15 wk), the Cry1Ac concentration in cotton leaves was 75% lower than at 4 wk. On these plants, < 10% of susceptible larvae reached the fifth instar, and none survived to pupation. In contrast, survival to adulthood on Cry1Ac cotton was 62% for resistant larvae and 39% for F1 larvae. These results show that inheritance of resistance to 15-wk-old Cry1Ac cotton is partially dominant, in contrast to results previously obtained on 4-wk-old Cry1Ac cotton. Growth and survival of resistant insects were similar on Cry1Ac cotton and on non-Bt cotton, but F1 insects developed more slowly on Cry1Ac cotton than on non-Bt cotton. Survival was lower and development was slower for resistant larvae than for susceptible and F1 larvae on non-Bt cotton. These results show recessive fitness costs are associated with resistance to Cry1Ac.  相似文献   

5.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

6.
Transgenic cotton, Gossypium hirsutum L., expressing the crylAc and cry2Ab genes from Bacillus thuringiensis (Bt) Berliner variety kurstaki in a pyramid (Bollgard II) was widely planted for the first time in Australia during the 2004-2005 growing season. Before the first commercial Bollgard II crops, limited amounts of cotton expressing only the crylAc gene (Ingard) was grown for seven seasons. No field failures due to resistance to CrylAc toxin were observed during that period and a monitoring program indicated that the frequency of genes conferring high level resistance to the CrylAc toxin were rare in the major pest of cotton, Helicoverpa armigera (Htibner) (Lepidoptera: Noctuidae). Before the deployment of Bollgard II, an allele conferring resistance to Cry2Ab toxin was detected in field-collected H. armigera. We established a colony (designated SP15) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony (GR). Through specific crosses and bioassays, we established that the resistance present in SP15 was due to a single autosomal gene. The resistance was recessive. Homozygotes were highly resistant to Cry2Ab toxin, so much so, that we were unable to induce significant mortality at the maximum concentration of toxin available. Homozygotes also were unaffected when fed leaves of a cotton variety expressing the cry2Ab gene. Although cross-resistant to Cry2Aa toxin, SP15 was susceptible to CrylAc and to the Bt product DiPel.  相似文献   

7.
The susceptibility of one of the most important pests in southern Africa, Helicoverpa armigera (Lepidoptera: Noctuidae), to Bacillus thuringiensis Cry proteins was evaluated by bioassay. Cry proteins were produced in Escherichia coli BL21 cells that were transformed with plasmids containing one of six cry genes. The toxicity of each Cry protein to H. armigera larvae was determined by the diet contamination method for second instar larvae and the droplet feeding method for neonate larvae. For each of the proteins, dose-mortality and dose-growth inhibition responses were analyzed and the median lethal dose (LD(50)) and median inhibitory dose (ID(50)) determined. Second instar larvae were consistently less susceptible to the evaluated Cry proteins than neonate larvae. The relative toxicity of Cry proteins ranked differently between neonate larvae and second instar larvae. On the basis of the LD(50) and ID(50) values, Cry1Ab, Cry1Ac, and Cry2Aa were the most toxic of the evaluated proteins to H. armigera larvae. The study provides an initial benchmark of the toxicity of individual Cry proteins to H. armigera in South Africa.  相似文献   

8.
Glasshouse and laboratory experiments were conducted to evaluate the relative fitness of Cry1A-susceptible and laboratory-selected resistant strains of Helicoverpa armigera (Hübner). Life history parameters of H. armigera larvae feeding on young cotton plants showed a significant developmental delay of up to 7 d for the resistant strain compared with the susceptible strain on non-Bacillus thuringiensis (Bt) cotton. This fitness cost was not evident on artificial diet. There was no developmental delay in the F1 hybrid progeny from the reciprocal backcross of the resistant and susceptible strains, indicating that the fitness cost is recessive. In two cohorts tested, survival to pupation of resistant larvae on Bt cotton expressing Cry1Ac was 54 and 51% lower than on non-Bt cotton, whereas all susceptible and F1 larvae tested on Cry1Ac cotton were killed. Mortality of susceptible larvae occurred in the first or second instar, whereas the F1 larvae were able to develop to later instars before dying, demonstrating that resistance is incompletely recessive. The intrinsic rate of increase was reduced by >50% in the resistant strain on Cry1Ac cotton compared with the susceptible strain on non-Bt cotton. There was a significant reduction in the survival of postdiapausal adults from the resistant strain and the F1 strains, indicating that there is a nonrecessive overwintering cost associated with Cry1A resistance in H. armigera.  相似文献   

9.
Toxicity and larval growth inhibition of 11 insecticidal proteins of Bacillus thuringiensis were evaluated against neonate larvae of Helicoverpa armigera, a major pest of important crops in Spain and other countries, by a whole-diet contamination method. The most active toxins were Cry1Ac4 and Cry2Aa1, with LC50 values of 3.5 and 6.3 microg/ml, respectively. At the concentrations tested, Cry1Ac4, Cry2Aa1, Cry9Ca, Cry1Fa1, Cry1Ab3, Cry2Ab2, Cry1Da, and Cry1Ja1, produced a significant growth inhibition, whereas Cry1Aa3, Cry1Ca2, and Cry1Ea had no effect.  相似文献   

10.
11.
Six insecticides of different chemistries were evaluated against the cotton bollworm, Helicoverpa zea (Boddie), in non-B.t. (Deltapine 'DP 5415', Deltapine 'DP 5415RR') and transgenic Bacillus thuringiensis (Berliner) (B.t.) (Deltapine 'NuCOTN 33B', Deltapine 'DP 458 B/RR') cotton. In 1998, treatments consisted of three rates each of a pyrethroid (lambda-cyhalothrin), spinosyn (spinosad), carbamate (thiodicarb), pyrrole (chlorfenapyr), oxadiazine (indoxacarb), and avermectin (emamectin benzoate) in a nonirrigated field. In 1999, treatments consisted of three rates each of lambda-cyhalothrin, spinosad, thiodicarb, and indoxacarb in an irrigated and a nonirrigated (dryland) field. The highest rate of each insecticide corresponded to normal grower-use rates. Spinosad and thiodicarb controlled H. zea in non-B.t. cotton, whereas other materials were less effective. Even though H. zea is becoming increasingly resistant to pyrethroid insecticides, lambda-cyhalothrin was highly effective in dryland B. thuringiensis cotton. Spinosad and thiodicarb were equally effective. Data indicated that reduced rates of lambda-cyhalothrin, spinosad, and thiodicarb could be used for control of H. zea in dryland B.t. cotton systems. However, reduced rates of these insecticides in a heavily irrigated B.t. cotton system did not provide adequate control.  相似文献   

12.
A disrupted allele (r1) of a cadherin gene (Ha_BtR) is genetically associated with incompletely recessive resistance to Bacillus thuringiensis toxin Cry1Ac in a Cry1Ac-selected strain (GYBT) of Helicoverpa armigera. The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac, >41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to Cry1Ac in the SCD-r1 strain was completely recessive. Life tables of the SCD and SCD-r1 strains on artificial diet in the laboratory were constructed, and results showed that the net replacement rate (R0) did not differ between the strains. The toxicity of two chemical insecticides, fenvalerate and monocrotophos, against the SCD-r1 strain was not significantly different from that to the SCD strain. However, larval development time of the SCD-r1 strain was significantly longer than that of the SCD strain, indicating a fitness cost of slower larval growth is associated with Ha_BtR disruption in H. armigera.  相似文献   

13.
A population of cabbage looper, Trichoplusia ni (Hübner), collected from commercial greenhouses in the lower mainland of British Columbia, Canada, in 2001 showed a resistance level of 24-fold to Dipel, a product of Bacillus thuringiensis (Bt) subspecies kurstaki. This population was selected with Cry1Ac, the major Bt Cry toxin in Dipel, to obtain a homogenous population resistant to Cry1Ac. The resulting strain of T. ni, named GLEN-Cry1Ac, was highly resistant to Cry1Ac with a resistance ratio of approximately 1000-fold. The larvae from the GLEN-Cry1Ac strain could survive on Cry1Ac-expressing transgenic broccoli plants that were highly insecticidal to T. ni and diamondback moth, Plutella xylostella (L.). The inheritance of Cry1Ac resistance in this T. ni strain was autosomal and incompletely recessive. The degree of dominance of the resistance was -0.402 and -0.395, respectively, for the neonates in reciprocal crosses between the GLEN-Cry1Ac and a laboratory strain of T. ni. Using chi2 goodness-of-fit test, we demonstrated that the inhibition of larval growth resulting from testing 12 toxin doses in the progeny of the backcross fit the predicted larval responses based on a monogenic inheritance model. Therefore, we conclude that the inheritance of the resistance to Cry1Ac in the T. ni larvae is monogenic.  相似文献   

14.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

15.
Interactions between the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), its larval parasitoid Microplitis mediator (Haliday) (Hymenoptera: Braconidae), and the Cry1Ac toxin of Bacillus thuringiensis Berliner were evaluated under laboratory conditions. The growth of H. armigera larvae was delayed and its pupal rate and pupal weight decreased when they were fed on a diet containing Cry1Ac toxin. Due to the lowered growth rate of the host larvae, the time available for parasitization of H. armigera by M. mediator increased when the host larvae were reared on a diet containing Cry1Ac toxin at concentrations of 0.5, 1, 2, and 4 µg g?1. The longevity of female and male parasitoids was not significantly affected when newly emerging wasps fed on honey solutions containing three different concentrations of Cry1Ac toxin (125, 250, and 500 µg ml?1). When female parasitoids were fed on honey solutions containing Cry1Ac, their offsprings’ egg and larval development period, pupal weight, length of pupation, adult weight, and adult longevity did not change significantly in most of the treatments compared with controls. When the female parasitoids parasitized host larvae that had been fed on a diet containing 0.5, 1, 2, 4, and 8 µg g?1 Cry1Ac toxin, their offsprings’ eggs and larvae were significantly delayed. Their pupal weight, adult weight, and adult longevity were also significantly less than controls.  相似文献   

16.
周慧丹  杨亦桦  吴益东 《昆虫学报》2010,53(10):1097-1103
氨肽酶N(aminopeptidase N, APN)和钙粘蛋白(cadherin)是存在于鳞翅目昆虫中肠刷状缘膜囊(brush border membrane vesicles, BBMV)上Bt毒素Cry1A的受体。本实验将棉铃虫Helicoverpa armigera氨肽酶N1基因Haapn1和钙粘蛋白基因Ha_BtR双链RNA(dsRNA)注入棉铃虫4龄幼虫体内, 以研究这两种受体基因沉默后对Cry1Ac毒力的影响。结果表明: 注射dsRNA(1 μg/头)进行基因沉默后, Haapn1 mRNA表达量比注射缓冲液(elution solution, ES)的对照下降了30%~49%, Ha_BtR mRNA表达量下降了30%~37%。注射Haapn1 dsRNA的幼虫在40和70 μg/cm2 Cry1Ac活化毒素下的死亡率显著低于注射ES的幼虫, 而在 100 和 170 μg/cm2 Cry1Ac原毒素处理下两者死亡率无显著差异; Cry1Ac活化毒素以及原毒素对注射Ha_BtR dsRNA幼虫与注射ES幼虫的毒力均无显著差异。当同时注射Haapn1Ha_BtR dsRNA后, 干扰后的幼虫对Cry1Ac活化毒素和原毒素的敏感性均显著下降。本研究进一步证明了棉铃虫Haapn1和Ha_BtR均是Bt毒素Cry1Ac的功能受体, 这两种受体蛋白共同参与Cry1Ac的毒杀作用过程。该结果也提示, Haapn1Ha_BtR基因产生突变都可能导致棉铃虫对Cry1Ac产生抗性。  相似文献   

17.
The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r(1)) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r(2) and r(3)) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r(2) and r(3) alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.  相似文献   

18.
氨肽酶N(aminopeptidase N,APN)和钙粘蛋白(cadherin)是存在于鳞翅目昆虫中肠刷状缘膜囊(brush border membrane vesicles,BBMV)上Bt毒素Cry1A的受体.本实验将棉铃虫Helicoverpa armigera氨肽酶N1基因Haapnl和钙粘蛋白基因Ha_BtR双链RNA(dsRNA)注入棉铃虫4龄幼虫体内,以研究这两种受体基因沉默后对Cry1Ac毒力的影响.结果表明:注射dsRNA(1 μg/头)进行基因沉默后,Haapnl mRNA表达量比注射缓冲液(elution solution,ES)的对照下降了30%~49%,Ha_BtR mRNA表达量下降了30%~37%.注射Haapnl dsRNA的幼虫在40和70 μg/cm2 Cry1Ac活化毒素下的死亡率显著低于注射ES的幼虫,而在100和170 μg/cm2 Cry1Ac原毒素处理下两者死亡率无显著差异;Cry1Ac活化毒素以及原毒素对注射Ha_BtR dsRNA幼虫与注射ES幼虫的毒力均无显著差异.当同时注射Haapnl及Ha_BtR dsRNA后,干扰后的幼虫对Cry1Ac活化毒素和原毒素的敏感性均显著下降.本研究进一步证明了棉铃虫Haapnl和Ha_BtR均是Bt毒素Cry1Ac的功能受体,这两种受体蛋白共同参与Cry1Ae的毒杀作用过程.该结果也提示.Haapnl或Ha_BtR基因产生突变都可能导致棉铃虫对CrylAc产生抗性.  相似文献   

19.
魏纪珍  郭予元  高希武  张涛  梁革梅 《昆虫学报》2012,55(10):1154-1160
为了防治多种鳞翅目害虫, 表达Cry1Fa的转基因玉米和棉花已在美国商业化种植。明确棉铃虫Helicoverpa armigera对Cry1Fa与Cry1Ac的交互抗性及这两种杀虫蛋白之间的协同作用, 可以为表达 Cry1Fa+Cry1Ac的转双价抗虫棉花的合理应用提供依据。本实验测定了Cry1Fa对棉铃虫敏感品系(96S)及用Cry1Ac筛选的抗性品系(BtR, 抗性倍数2 194.15倍)的毒力, 发现Cry1Fa对敏感棉铃虫的毒力远低于Cry1Ac, LC50值是Cry1Ac的504.80倍; 而且抗性品系BtR对Cry1Fa存在19.98倍的交互抗性。Cry1Fa与Cry1Ac混用可以提高Cry1Fa毒杀敏感棉铃虫的效果, 尤其是Cry1Fa浓度较低时, 加入Cry1Ac, 可以显著增加Cry1Fa的毒力; 但只有加入较高浓度的Cry1Fa时才能增加Cry1Ac的毒力。由于BtR品系已经对Cry1Ac产生抗性, Cry1Ac对抗性棉铃虫的毒力明显降低; 在较高浓度的Cry1Ac中加入Cry1Fa可以显著增加棉铃虫的死亡率(P=0.0015, F=6.88, df=6), 但最高死亡率仅为58.33%。D-饱和最优试验的结果证实, Cry1Ac对于敏感棉铃虫的死亡率的影响达到显著水平(t1=13.76﹥t0.05), Cry1Ac与Cry1Fa的交互作用对毒力的影响也达到显著水平(t22=2.42﹥t0.05; t11=6.95﹥t0.05; t12=3.43﹥t0.05)。Cry1Ac和Cry1Fa对抗性棉铃虫死亡率的影响都达到显著水平(t1=3.03﹥t0.05;t2=2.59﹥t0.05), 但Cry1Ac是决定抗、 感棉铃虫死亡率的关键因素; Cry1Ac与Cry1Fa最佳浓度配比范围都是1.41~2.10 μg/cm2; 在抗性品系中, Cry1Ac和Cry1Fa的交互作用不显著。所以, 尽管Cry1F+Cry1A作物扩大了杀虫谱, 但棉铃虫对这两种蛋白存在交互抗性, 而且这两种蛋白混用对治理抗Cry1Ac棉铃虫的效果不理想, 因此不建议在中国种植表达Cry1F+Cry1A的棉花。关  相似文献   

20.
为了明确棉铃虫Helicoverpa armigera(Hübner)取食转双价基因(Bt+CpTI)棉叶以及取食一段时间转基因棉叶后,再取食常规棉叶,对棉铃虫取食量、体重增长量及中肠羧酸酯酶活性的影响,本研究分别用转双价基因棉叶和常规棉叶饲喂4龄棉铃虫幼虫5d,比较考察了棉铃虫的取食量、体重增长量及中肠羧酸酯酶的活性;另外分别考察了棉铃虫取食转基因棉叶1d及3d后再取食常规棉叶,其中肠羧酸酯酶的变化.结果表明,持续取食常规棉花叶片5d的棉铃虫,其中肠羧酸酯酶的活性持续升高;而持续取食转基因棉叶5d的棉铃虫,其中肠羧酸酯酶的活性先升高后降低.取食转基因棉花叶片1d后,取食常规棉叶的棉铃虫,其中肠羧酸酯酶的活性,随着换取常规棉叶时间的延长,活性逐渐降低;而棉铃虫在取食3d转基因棉叶后再取食常规棉叶,其中肠羧酸酯酶活性却一直保持较高.可见,棉铃虫在取食转基因棉花后,其羧酸酯酶活性可以被诱导,这应与棉铃虫对转基因棉的抗性及防御性有一定关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号