首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major basic peroxidase (ZePrx) from Zinnia elegans suspension cell cultures was purified and cloned. The purification resolved ZePrxs in two isoforms (ZePrx33.44 and ZePrx34.70), whose co-translational and post-translational modifications are characterized. Based on the N-terminal sequence obtained by Edman degradation of mature ZePxs, it may be expected that the immature polypeptides of ZePrxs contain a signal peptide (N-terminal pro-peptide) of 30 amino acids, which directs the polypeptide chains to the ER membrane. These immature polypeptides are co-translationally processed by proteolytic cleavage, and modeling studies of digestions suggested that the processing of the N-terminal pro-peptide of ZePrxs is performed by a peptidase from the SB clan (S8 family, subfamily A) of serine-type proteases. When the post-translational modifications of ZePrxs were characterized by trypsin digestion, and tryptic peptides were analyzed by reverse phase nano liquid chromatography (RP-nanoLC) coupled to MALDI-TOF MS, it was seen that, despite the presence in the primary structure of the protein of several (disulphide bridges, N-glycosylation, phosphorylation and N-myristoylation) potential post-translational modification sites, ZePrxs are only post-translationated modified by the formation of N-terminal pyroglutamate residues, disulphide bridges and N-glycosylation. Glycans of ZePrxs belong to three main types and conduce to the existence of at least ten different molecular isoforms. The first glycans belong to both low and high mannose-type glycans, with the growing structure Man3–9(GlcNAc)2. Low mannose-type glycans, Man3–4(GlcNAc)2, coexist with the truncated (paucimannosidic-type) glycan, Man3Xyl1Fuc1(GlcNAc)2, in the G3 and G4 sub-isoforms of ZePrx33.44. In ZePrx34.70, on the other hand, the complex-type biantennary glycan, Man3Xyl1Fuc3(GlcNAc)5, and the truncated (paucimannosidic-type) glycan, Man3Xyl1Fuc1(GlcNAc)2, appear to fill the two putative sites for N-glycosylation. Since the two N-glycosylation sites in ZePrxs are located in an immediately upstream loop region of helix F′′ (close to the proximal histidine) and in helix F′′ itself, and are flanked by positive-charged amino acids that produce an unusual positive-net surface electrostatic charge pattern, it may be expected that glycans not only affect reaction dynamics but may well participate in protein/cell wall interactions. These results emphasize the complexity of the ZePrx proteome and the difficulties involved in establishing any fine structure-function relationship.  相似文献   

2.

Background and Aims

Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the ‘living fossil’ Ginkgo biloba and their regulation by salt stress and salicylic acid.

Methods

Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored.

Key Results

A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10.

Conclusions

Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity.  相似文献   

3.
We characterized Bos taurus leptin receptor (Ob-R) isoform mRNAs as well as their expression in different tissues, including some adipose depots (perirenal, subcutaneous and intermuscular adipose tissues). Based on the GenBank database sequences of the bovine partial Ob-R, primers were designed to amplify cDNAs of bovine Ob-R isoforms. The full-length cDNAs of bovine the Ob-R isoforms were cloned by combination with 3'-and 5'-RACE. Three bovine Ob-R isoform cDNAs were cloned and the sequence analyses revealed that these cDNAs were bovine Ob-R isoforms, i.e., the long form (Ob-Rb), the middle form (Ob-Ra) and the short form (Ob-Rc). The open reading frames of Ob-Ra, Ob-Rb and Ob-Rc gene were 2688, 3498 and 2673 bp, respectively. The deduced amino acid sequences suggested that the isoforms were single transmembrane proteins, and differed in the C-terminal amino acid sequences. The amino acid sequence of these bovine Ob-R isoforms showed 73-75% identity compared with the corresponding mouse isoforms. The tissue-specific expression of the bovine Ob-R isoforms were measured by semi-quantitative RT-PCR. Expression of Ob-Rb was highest in liver, heart, spleen and kidney, with lower expression in lung and testis, and slight expression in muscle. Ob-Ra was highly expressed in liver and spleen, whereas moderate expression was observed in heart, testis, and muscle, and its expression was the lowest in lung and kidney. Ob-Rc mRNA was expressed in the liver, heart, testis, kidney and muscle, but not in the lung and spleen. In adipose tissues, higher expression of Ob-Ra and Ob-Rb mRNA was observed in intermuscular adipose tissue than in subcutaneous or perirenal adipose tissues. Ob-Ra mRNA level was positively correlated with Ob-Rb mRNA level in the adipose tissues (r=0.81, P<0.05). The results demonstrated that each Ob-R isoform mRNA was differentially expressed in various tissues of cattle, which may be involved in the difference of peripheral actions for leptin.  相似文献   

4.
The present study investigated the effect of ferulic acid (FA; 0–1000 µM) on early growth, and rhizogenesis in mung bean (Vigna radiata) hypocotyls and associated biochemical changes. FA severely affected the radicle elongation and number of secondary roots after 72 h. The root and shoot length, number and length of secondary roots, and seedling dry weight of one-week-old seedlings of mung bean were decreased by 64%. The rooting potential (percent rooting, number and length of adventitious roots) of mung bean hypocotyls under in vitro conditions was significantly inhibited in response to 1–100 µM FA. At 1000 µM there was complete cessation of rooting. FA caused a reduction in the contents of water-soluble proteins and endogenous total phenolics, whereas the activities of proteases, peroxidases, and polyphenol peroxidases increased. The study concludes that FA inhibits root growth and development, and in vitro rooting process in mung bean by interfering with biochemical processes that are crucial for root formation.  相似文献   

5.
Sasaki S  Nishida T  Tsutsumi Y  Kondo R 《FEBS letters》2004,562(1-3):197-201
An investigation was performed to determine whether lignin dehydrogenative polymerization proceeds via radical mediation or direct oxidation by peroxidases. It was found that coniferyl alcohol radical transferred quickly to sinapyl alcohol. The transfer to syringaresinol was slower, however, the transfer to polymeric lignols occurred very slightly. This result suggests that the radical mediator theory does not sufficiently explain the mechanism for dehydrogenative polymerization of lignin. A cationic cell wall peroxidase (CWPO-C) from poplar (Populus alba L.) callus showed a strong substrate preference for sinapyl alcohol and the sinapyl alcohol dimer, syringaresinol. Moreover, CWPO-C was capable of oxidizing high-molecular-weight sinapyl alcohol polymers and ferrocytochrome c. Therefore, the CWPO-C characteristics are important to produce polymer lignin. The results suggest that CWPO-C may be a peroxidase isoenzyme responsible for the lignification of plant cell walls.  相似文献   

6.
Based on the NH2-terminal sequence of three PR-10 isoforms previously identified in Lupinus albus leaves and a conserved amino-acid region in the PR-10 proteins from leguminosae, a pair of oligonucleotides was designed and used to amplify the corresponding cDNA fragment from a L. albus leaves cDNA library. A fragment of DNA of 200 bp was isolated from the polymerase chain reaction (PCR) mixture and subsequently used to screen the cDNA library. A cDNA coding for a PR-10 protein of 158 amino acid residues was cloned and sequenced. Subsequent studies involving Northern and Western blot analysis have shown that the PR-10 protein isoforms are differentially expressed during the development of the healthy lupin plant. High mRNA and protein contents were detected in roots and hypocotyls of both 7- and 20-d-old plants. In young leaves, the mRNA and protein contents were low and increasead in mature leaves. Tissue printing experiments with root sections suggest that the proteins are extracellular and are mainly associated with the vascular tissues in mature roots.  相似文献   

7.
8.
9.
During the cloning of abundant cDNAs expressed in the Micrurus corallinus coral snake venom gland, we cloned an alpha-neurotoxin homologue cDNA (nxh1). Two others isoforms were also cloned (nxh3 and nxh7, respectively). The nxh1 cDNA codes for a potential coral snake toxin with a signal peptide of 21 amino acids plus a predicted mature peptide with 57 amino acids. The deduced protein is highly similar to known toxic three-finger alpha-neurotoxins, with four deduced S-S bridges at the same conserved positions. This is the first cDNA coding for a three-finger related protein described so far for coral snakes. However, the predicted protein does not possess some of the important amino acids for the nicotinic acetylcholine receptor interaction. This protein was expressed in Escherichia coli as a His-tagged protein that allowed the rapid purification of the recombinant protein. This protein was used to generate antibodies which recognized the recombinant protein in Western blot and also a single band present in the M. corallinus venom, but not in the venom of 10 other Micrurus species.  相似文献   

10.
A single degenerate glutamine synthetase (GS)-specific primer was used to amplify the 3′ end of cDNAs derived from different GS genes that are expressed in leaves and roots of sunflower (Helianthus annuus L. cv. Peredovic). Four types of GS cDNA (I, II, III and IV) were simultaneously amplified from leaves and five types (I, II, V, VI, VII) from roots with a minimum investment of time and experimental work. cDNAs II, III and IV encode chloroplastic isoforms as deduced by the presence of chloroplastic GS-specific features in their sequences. The rest of cDNAs codifies cytosolic isoforms. Using cDNA-specific probes and primers, homologous sequences to all GS cDNAs amplified from cv. Peredovic, except to cDNAs III and IV, were detected in the inbred line R41. This result strongly suggests that the three cDNAs for chloroplastic isoform are allelic sequences from the same locus, and since cDNA type IV contains sequences derived from cDNAs II and III, it indicates a recombinational origin. The results presented are consistent with the existence of a GS gene family in sunflower with at least five members. Four of them, named ggs1.1 to ggs1.4, codify for the cytosolic isoforms (cDNAs I, V, VI and VII). A fifth member, named ggs2, from which three allelic sequences (cDNAs II, III and IV) have been cloned, encodes the chloroplastic isoform. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.  相似文献   

12.
Lignins are cell wall phenolic heteropolymers which result from the oxidative coupling of three monolignols, p-coumaryl, coniferyl and sinapyl alcohol, in a reaction mediated by peroxidases. The most distinctive variation in the monomer composition of lignins in vascular plants is that found between the two main groups of seed plants. Thus, while gymnosperms lignins are typically composed of G units, with a minor proportion of H units, angiosperms lignins are largely composed of similar levels of G and S units. The presence of S units in angiosperm lignins raises certain concerns in relation with the step of lignin assembly due to the inability of most peroxidases to oxidize syringyl moieties. Zinnia elegans is currently used as a model for lignification studies: – first because of the simplicity and duality of the lignification pattern shown by hypocotyls and stems, in which hypocotyl lignins are typical of angiosperms, while young stem lignins partially resemble those occurring in gymnosperms. Secondly, because of the nature of the peroxidase isoenzyme complement, which is almost completely restricted to the presence of a basic peroxidase isoenzyme, which is capable of oxidizing both coniferyl and sinapyl alcohol, as well as both coniferyl and sinapyl aldehyde. In fact, the versatility of this enzyme is such that the substrate preference covers the three p-hydroxybenzaldehydes and the three p-hydroxycinnamic acids. The basic pI nature of this peroxidase is not an exceptional frame point in this system since basic peroxidases are differentially expressed during lignification in other model systems, show unusual and unique biochemical properties as regards the oxidation of syringyl moieties, and their down-regulation in transgenic plants leads to a reduction in lignin (G+S) levels. Basic peroxidase isoenzymes capable of oxidizing syringyl moieties are already present in basal gymnosperms, an observation that supports the idea that these enzymes were probably present in an ancestral plant species, pre-dating the early radiation of seed plants. It also suggests that the evolutionary gain of the monolignol branch which leads to the biosynthesis of sinapyl alcohol, and of course to syringyl lignins, was not only possible but also favored because the enzymes responsible for its polymerization had evolved previously. In this scenario, it is not surprising that these enzymes responsible for lignin construction appeared early in the evolution of land plants, and have been largely conserved during plant evolution. Abreviations: 4CL –p-hydroxycinnamate CoA ligase; C3H –p-coumarate-3-hydroxylase; C4H – cinnamate-4-hydroxylase; p-CA –p-coumaric acid; CAD – coniferyl alcohol dehydrogenase; CAld5H – coniferylaldehyde-5-hydroxylase; CCR –p-hydroxycinnamoyl-CoA reductase; CoI – compound I; CoII – compound II; G – guaiacyl unit; H –p-hydroxyphenyl unit; PAL – phenylalanine ammonia-lyase; S – syringyl unit.  相似文献   

13.
Molecular cloning of human cardiac troponin I using polymerase chain reaction   总被引:17,自引:0,他引:17  
We have used the polymerase chain reaction (PCR) to synthesise a cDNA encoding part of human cardiac troponin I. Amplification was achieved using fully degenerate sets of oligonucleotides corresponding to conserved regions of amino acid sequence identified in other troponin I isoforms. The cloned PCR fragment was subsequently used to isolate full-length cDNAs from a cardiac cDNA library. We describe the approach, as a general cloning strategy starting from limited amino-acid sequence data and report the cloning, and complete amino acid sequence of human cardiac troponin I. Analysis of human development using these clones demonstrates early expression of this gene in the heart.  相似文献   

14.
The last step of lignin biosynthesis in Zinnia elegans suspension cell cultures (SCCs) catalyzed by peroxidase (ZePrx) has been characterized. The k(3) values shown by ZePrx for the three monolignols revealed that sinapyl alcohol was the best substrate, and were proportional to their oxido/reduction potentials, signifying that these reactions are driven exclusively by redox thermodynamic forces. Feeding experiments demonstrate that cell wall lignification in SCCs is controlled by the rate of supply of H(2)O(2). The results also showed that sites for monolignol beta-O-4 cross-coupling in cell walls may be saturated, suggesting that the growth of the lineal lignin macromolecule is not infinite.  相似文献   

15.
Specific activities and isoform patterns of peroxidases, acid phosphatases, DNases and RNases were studied in relation to in vitro rooting of Petunia × hybrida microshoots in the presence of 4 μM indole-3-butyric acid (IBA). Specific activities of the above enzymes increased in the course of rooting. Rhizogenesis could be related with an increased specific activity of peroxidases during the initiation phase, in parallel with increased lignin content. Twelve peroxidases, six anionic (A1–A6) and six cationic (C1–C6), seven acid phosphatases (ACP1–ACP7), seven RNases (R1–R7) and four DNases (D1–D4) isoforms were detected following native PAGE. Variation in the number of the above isoforms and their quantity was observed during different stages of rooting. Particularly, A2, A3, C3, C4, C5, ACP2, R1, R2, R3, and D4 isoforms appeared after the induction phase and could be related to emergence of root primordia. Additionally, R3 and D4 could be associated with cell division and differentiation, since these are only expressed in rooted microshoots. Moreover, the higher number of roots in IBA-treated microshoots could be related to the higher expression of RNase and DNase isoforms during initiation and expression phases.  相似文献   

16.
Authentic cDNAs encoding the activator protein for acid beta-glucosidase (EC3.2.1.45), co-beta-glucosidase, were cloned from the pCD and lambda gt11 human cDNA libraries. Initial screening with oligonucleotide mixtures encoding amino acid sequences of co-beta-glucosidase identified partial cDNAs which were used to obtain a potentially full-length cDNA from the lambda gt11 library. This clone (2767 bp), EGTISI, contained 5' (38 bp) and 3' (1157 bp) noncoding sequences, a translation initiation site, and an open reading frame encoding 524 amino acids which included a typical hydrophobic signal sequence (16 amino acids). Computer analyses identified three regions of high similarity to co-beta-glucosidase encoded by tandem sequences in EGTISI. Searches revealed that two of these regions encoded peptides of known function; SAP1 (sphingolipid activator protein 1) and protein C (a new sphingolipid activator protein) were encoded by EGTISI sequences 5' and 3', respectively, to those for co-beta-glucosidase. The third region of similarity, encoding a theoretical peptide (undefined function), was located most 5' in the cDNA. EGTISI and its encoded polypeptide had high similarity (77% nucleotide identity and about 80% amino acid similarity) to a rat Sertoli cell cDNA and its encoded sulfated glycoprotein-1. These results indicate that a single highly conserved gene encodes the precursor for four potential sphingolipid activator proteins in rat and man.  相似文献   

17.
Complementary DNAs encoding two subunits of scallop (Patinopecten yessoensis) testis calcineurin were cloned, and the nucleotide sequences of their coding regions were determined. The deduced amino acid sequences of the catalytic subunit, calcineurin A (486 amino acid residues, M(r) 55,005.91), and the regulatory subunit, calcineurin B (170 residues, M(r) 19,237.67), showed high similarity to those of mammalian calcineurins, especially to the brain-type ones rather than to the testis-specific isoforms. Northern blot analysis showed that only a single species for each subunit was expressed in testis and the expression of each subunit increased dramatically from January to March during the maturation stages of the one-year cycle. The period when the maximum amount of mRNAs for calcineurin was expressed corresponds to the one immediately after meiosis, that is, the maturation stage in which 20-80% of the average testis is occupied by spermatozoa. The result is consistent with the one as to the expression of the testis-specific isoform of calcineurin A in mouse, which occurs immediately after meiosis. This is the first report on the stage-specific expression of calcineurin in invertebrate testis and its sequence similarity to the mammalian brain-type isoforms may indicate that the mammalian testis-specific isoforms appeared in evolution after the divergence of mammals from the mollusks and then diverged rapidly for specific functions in testis.  相似文献   

18.
Lignins are aromatic heteropolymers that arise from oxidative coupling of lignin precursors, including lignin monomers (p-coumaryl, coniferyl, and sinapyl alcohols), oligomers, and polymers. Whereas plant peroxidases have been shown to catalyze oxidative coupling of monolignols, the oxidation activity of well-studied plant peroxidases, such as horseradish peroxidase C (HRP-C) and AtPrx53, are quite low for sinapyl alcohol. This characteristic difference has led to controversy regarding the oxidation mechanism of sinapyl alcohol and lignin oligomers and polymers by plant peroxidases. The present study explored the oxidation activities of three plant peroxidases, AtPrx2, AtPrx25, and AtPrx71, which have been already shown to be involved in lignification in the Arabidopsis stem. Recombinant proteins of these peroxidases (rAtPrxs) were produced in Escherichia coli as inclusion bodies and successfully refolded to yield their active forms. rAtPrx2, rAtPrx25, and rAtPrx71 were found to oxidize two syringyl compounds (2,6-dimethoxyphenol and syringaldazine), which were employed here as model monolignol compounds, with higher specific activities than HRP-C and rAtPrx53. Interestingly, rAtPrx2 and rAtPrx71 oxidized syringyl compounds more efficiently than guaiacol. Moreover, assays with ferrocytochrome c as a substrate showed that AtPrx2, AtPrx25, and AtPrx71 possessed the ability to oxidize large molecules. This characteristic may originate in a protein radical. These results suggest that the plant peroxidases responsible for lignin polymerization are able to directly oxidize all lignin precursors.  相似文献   

19.
20.
During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35SuidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号