首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
32P-labeled photoaffinity analogs of bis(5'-adenosyl)-tetraphosphate and bis(5'-adenosyl)triphosphate which contain a single photoreactive 8-azidoadenosine group distal to the radiolabel have been synthesized from commercially available components using a combination of chemical and enzymatic procedures including a water-soluble carbodiimide. The method is simple, rapid, and produces yields of high specific activity products of around 60%. The analog of bis(5'-adenosyl)-tetraphosphate is very similar to the parent compound in its inhibition of rat liver adenosine kinase and its efficiency as a substrate for the bis(5'-nucleosidyl)tetraphosphate pyrophosphohydrolase from Artemia embryos. In the latter case, ATP and 8-azidoAMP are the preferred products. As would be expected, this analog is a much more effective photoprobe for both adenosine and adenylate kinases than the corresponding analog of bis(5'-adenosyl)triphosphate. Both compounds have been used to photoaffinity label crude extracts of Artemia, Vero cells, and Clostridium acetobutylicum and preferential specific labeling of different polypeptides by each analog has been shown. In extracts of C. acetobutylicum, the labeling of a polypeptide of Mr 48,500 by the bis(5'-adenosyl)tetraphosphate analog was totally dependent on the presence of Co2+ ions. These compounds should therefore prove valuable both for the active site labeling of purified binding proteins and for the detection and identification of new target proteins for these nucleotides.  相似文献   

2.
P1-(lin-Benzo-5'-adenosyl)-P5-(5'-adenosyl) penraphosphate and P1-(lin-benzo-5'-adenosyl)-P4-(5'-adenosyl) tetraphosphate have been synthesized from lin-benzoadenosine 5'-monophosphoromorpholidate and adenosine 5'-tetraphosphate and adenosine 5'-triphosphate. These mixed dinucleoside polyphosphates are potent inhibitors of porcine muscle adenylate kinase, with association constants of 2 x 10(5) M-1 for the pentaphosphate and 2 x 10(6) M-1 for the tetraphosphate, respectively, as determined by kinetics and fluorescence experiments. The increase in fluorescence intensities and fluorescence lifetimes of both inhibitors upon binding to adenylate kinase results from a breaking of the intramolecular stacking interaction observed when these ligands are free in solution and implicates their binding to the enzyme in an "open" or "extended" form. These results and the dimensional requirements of these inhibitors are discussed in relation to our current knowledge of the active site of adenylate kinase and to the known inhibitors of adenylate kinase, P1,P5-bis(5'-adenosyl) pentaphosphate and P1,P4-bis-(5'-adenosyl) tetraphosphate.  相似文献   

3.
S P Harnett  G Lowe  G Tansley 《Biochemistry》1985,24(12):2908-2915
The activation of L-phenylalanine by yeast phenylalanyl-tRNA synthetase using adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate is shown to proceed with inversion of configuration at P alpha of ATP. This observation taken together with the lack of positional isotope exchange when adenosine 5'-[beta,beta-18O2]triphosphate is incubated with the enzyme in the absence of phenylalanine and in the presence of the competitive inhibitor phenylalaninol indicates that activation of phenylalanine occurs by a direct "in-line" adenylyl-transfer reaction. In the presence of Zn2+, yeast phenylalanyl-tRNA synthetase also catalyzes the phenylalanine-dependent hydrolysis of ATP to AMP and the synthesis of P1,P4-bis(5'-adenosyl) tetraphosphate (Ap4A). With adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate, the formation of AMP and Ap4A is shown to occur with inversion and retention of configuration, respectively. It is concluded that phenylalanyl adenylate is an intermediate in both processes, Zn2+ promoting AMP formation by hydrolytic cleavage of the C-O bond and Ap4A formation by displacement at phosphorus of phenylalanine by ATP.  相似文献   

4.
Effects of P1,P4-bis(5'-adenosyl)tetraphosphate and its phosphonate analogs on the ADP-ribosylation of H1 catalyzed by bovine testis ADP-ribose polymerase was investigated. Analogs App[CH(COCH3)]ppA and Ap[CH2]pppA as well as Ap4A inhibited poly(ADP)-ribosylation of histone H1 and at the same time accepted the ADP-ribosyl moiety of NAD. It was shown that inhibition of ADP-ribosylation of histone H1 is due to the competition of nucleotides with histone H1 for accepting ADP-ribosyl moiety of NAD on the one hand, and alteration of acceptor properties of the histone H1 on the other.  相似文献   

5.
The effect of virus infection on the intracellular concentration of the proposed stress alarmone P1P4-bis(5'-adenosyl) tetraphosphate (Ap4A) has been examined in Vero cells. Compared with exposure to 0.8 mM-Cd2+, which causes a 30-fold increase in Ap4A, infection with simian virus 40 and poliovirus causes only a 2-fold increase, whereas herpes simplex virus type 1 results in a decrease in Ap4A during the course of the infection.  相似文献   

6.
Novel analogues of P1,P4-bis(5'-adenosyl) tetraphosphate, Ap4A (1), have been prepared with sulphur substituents at P1 and P4 and either oxygen or methylene bridges at the P2,P3-position. Separation of three isomers of the ApspCH2ppsA species has been achieved by a combination of mplc and hplc and the Rp,Rp, Rp,Sp, and Sp,Sp diastereoisomers identified on the basis of selective enzymatic hydrolysis using snake venom phosphodiesterase. Each of these three isomers is a strong competitive inhibitor of the specific Ap4Aase from Artemia and is highly resistant to the asymmetric cleavage normally catalysed by this enzyme.  相似文献   

7.
V Pandey  M J Modak 《Biochemistry》1987,26(7):2033-2038
The catalysis of DNA synthesis by calf thymus terminal deoxynucleotidyltransferase (TdT) is strongly inhibited in the presence of Ap5A, while replicative DNA polymerases from mammalian, bacterial, and oncornaviral sources are totally insensitive to Ap5A addition. The Ap5A-mediated inhibition of TdT seems to occur via its interaction at both the substrate binding and primer binding domains as judged by classical competitive inhibition plots with respect to both substrate deoxynucleoside triphosphate (dNTP) and DNA primer and inhibition of ultraviolet light mediated cross-linking of substrate dNTP and oligomeric DNA primer to their respective binding sites. Further kinetic analyses of Ap5A inhibition revealed that the dissociation constant of the Ap5A-enzyme complex, with either substrate binding or primer binding domain participating in the complex formation, is approximately 6 times higher (Ki = 1.5 microM) compared to the dissociation constant (Ki = 0.25 microM) of the Ap5A-TdT complex when both domains are available for binding. In order to study the binding stoichiometry of Ap5A to TdT, an oxidized derivative of Ap5A, which exhibited identical inhibitory properties as its parent compound, was employed. The oxidation product of Ap5A, presumably a tetraaldehyde derivative, binds irreversibly to TdT when the inhibitor-enzyme complex is subjected to borohydride reduction. The presence of aldehyde groups in the oxidized Ap5A appeared essential for inhibitory activity since its reduction to alcohol via borohydride reduction or its linkage to free amino acids prior to use as an inhibitor rendered it completely ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A simple and practical procedure for the synthesis of P1,P4-di(adenosine 5'-) tetraphosphate from ATP by the catalysis of leucyl-tRNA synthetase from Bacillus stearothermophilus is described. Km for leucine was 6.7 microM and for ATP was 3.3 mM. The reaction yielded not only diadenosine tetraphosphate, but various byproducts such as P1,P3-(diadenosine 5'-) triphosphate, ADP and AMP. By coupling the reaction with an ATP regeneration system by acetate kinase and adenylate kinase with acetylphosphate as a phosphate donor, diadenosine tetraphosphate was prepared as a sole product at a high yield (96%).  相似文献   

9.
Threonyl-tRNA synthetase has been shown to be phosphorylated in reticulocytes (Dang, C. V., Tan, E. M., and Traugh, J. A., (1988) FASEB J. 2, 2376-2379). Upon incubation of reticulocytes with 8-bromo-cAMP, phosphorylation of threonyl-tRNA synthetase is stimulated approximately 2-fold, an increase similar to that observed with ribosomal protein S6. To analyze the effects of phosphorylation on activity, threonyl-tRNA synthetase has been purified to apparent homogeneity from rabbit reticulocytes utilizing a four-step purification procedure with the simultaneous purification of seryl-tRNA synthetase. Both synthetases are phosphorylated in vitro by the cAMP-dependent protein kinase. Prior to phosphorylation, the two synthetases produce significant amounts of P1, P4-bis(5'-adenosyl)-tetraphosphate (Ap4A) in the presence of the cognate amino acid and ATP, with activities comparable to that of lysyl-tRNA synthetase. Phosphorylation has no effect on aminoacylation, but an increase in Ap4A synthesis of up to 6-fold is observed with threonyl-tRNA synthetase and 2-fold with seryl-tRNA synthetase. Thus, cAMP-mediated phosphorylation of specific aminoacyl-tRNA synthetases appears to be a potential mode of regulation of Ap4A synthesis in mammals.  相似文献   

10.
An 18 S multienzyme complex of aminoacyl-tRNA synthetases is found to be active in the synthesis of diadenosine-5',5'-P1,P4-tetraphosphate (AppppA). Most of the activity is attributed to lysyl-tRNA synthetase in the complex. Free lysyl-tRNA synthetase dissociated from the synthetase complex is about 6-fold more active than the complex in AppppA synthesis, while their apparent Michaelis constants for ATP and lysine are similar. AMP, which reportedly activates AppppA synthesis (Hilderman, R.H. (1983) Biochemistry 22, 4353-4357), has no effect on AppppA synthesis. The higher activity of free Lys-tRNA synthetase is in part due to the higher stimulation of AppppA synthesis by Zn2+. These results suggest that association of aminoacyl-tRNA synthetases may affect AppppA synthesis.  相似文献   

11.
The three stereoisomers of P1,P4-bis(5'-adenosyl)-1,4-dithiotetraphosphate have been synthesized and their 31P NMR spectra investigated. The effect of temperature on the circular dichroic spectrum of the (Sp,Sp)-stereoisomer shows that unstacking of the molecule occurs as the temperature is raised. Treatment of the (Sp,Sp)-stereoisomer with cyanogen bromide in [18O]water leads to substitution of sulfur by 18O with predominant retention of configuration at P1 and P4. (Sp,Sp)-P1,P4-Bis(5'-adenosyl)-1[thio-18O2],4[thio-18O2]tetraphosphate was synthesized and on treatment with cyanogen bromide in [17O]water gave (Rp,Rp)-P1,P4-bis(5'-adenosyl)-1[17O,18O2],4[17O,18O2]tetraphosphate. Hydrolysis by unsymmetrical Ap4A phosphodiesterase from lupin seeds gave (Rp)-5'-[16O,17O,18O]AMP. The reaction therefore proceeds with inversion of configuration at phosphorus, indicating that the enzyme-catalyzed displacement by water occurs by a direct "in-line" mechanism.  相似文献   

12.
Six new methylenephosphonate analogues of P1P4-bis-(5',5'-adenosyl) tetraphosphate, Ap4A, having P2-P3 carbon bridges CF2, CCl2 and CH2CH2 or P1-P2 and P3-P4 carbon bridges CF2, CCl2 and CH2CH2 in the tetraphosphate chain, were examined as substrates or inhibitors for two specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow-lupin seeds and (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from Escherichia coli. All analogues in which the central oxygen atom was replaced by a stable carbon bridge were hydrolysed by the asymmetrical hydrolase (CF2 greater than CCl2 greater than O greater than CHBr greater than CH2 greater than CH2CH2). As expected, these analogues were not hydrolysed by the symmetrical hydrolase, which was also unable to act on analogues having P1-P2 and P3-P4 carbon bridges.  相似文献   

13.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

14.
We contrasted the protein kinase activities of pp60v-src, the transforming protein of Rous sarcoma virus, and its normal cellular homolog pp60c-src with respect to inhibition by P1,P4-di(adenosine-5')tetraphosphate by using the immune complex protein kinase assay. The concentration of P1,P4-di(adenosine-5')tetraphosphate required for 50% inhibition of pp60v-src kinase (1 microM) was found to be significantly lower than that required for inhibition of pp60c-src kinase (46 microM). Viral and cellular pp60src kinases differed to a lesser extent with respect to inhibition by adenosine-5'-tetraphosphate, di(guanosine-5')tetraphosphate, and ADP. No significant differences were found in the ATP Km values of pp60v-src (0.108 +/- 0.048 microM) and pp60c-src kinases (0.056 +/- 0.012 microM). These results demonstrate that the protein kinase activities of viral and cellular pp60src are functionally distinguishable, particularly on the basis of enhanced sensitivity of the viral enzyme to inhibition by P1,P4-di(adenosine-5')tetraphosphate. These functional differences are likely to be due to differences in the conformation of the active site and may be important for determining transformation potential.  相似文献   

15.
16.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 2-6) inhibited phosphorylation of immunoglobulin G from tumor-bearing rabbits (TBR IgG) by pp60src protein kinase purified from Rous sarcoma virus-transformed rat tumor cells. Ap4A, a nucleotide associated with eukaryotic cell proliferation, was one of the most effective inhibitors in the series, causing 50% inhibition of TBR IgG phosphorylation at 15 microM. Ap4A inhibited pp60src-dependent phosphorylation of TBR IgG in solution and immunoprecipitates, as well as the phosphorylation of tubulin, microtubule-associated proteins, and vinculin. Under similar assay conditions, Ap4A did not inhibit phosphorylation of histone H2b by cAMP- or cGMP-dependent protein kinases. Ap4A appears to interact noncovalently with the enzyme, because removal of pp60src by immunoprecipitation from solutions containing Ap4A restored activity to uninhibited levels. A 100-fold increase in ATP (4-400 nM) caused a 13-fold increase in the 50% inhibitory concentration of Ap4A (2.5-33 microM), consistent with the interpretation that Ap4A competes for an ATP-binding site on the pp60src molecule. The simplest explanation of these results is that Ap4A binds to the phosphodonor site for ATP.  相似文献   

17.
1. The intracellular compartmentation of diadenosine tetraphosphate (Ap4A) and of dTTP was studied in rat liver cells using non-aqueous glycerol for the isolation of cell nuclei. 2. This method allows a stepwise removal of cytoplasm from the nuclei. 3. The decrease in Ap4A or dTTP during the process was compared to the simultaneous decrease in RNA, which was taken to represent the cytoplasm. 4. In regenerating liver excised 24 hr after partial hepatectomy, Ap4A was almost equally distributed between the nucleus and cytoplasm. 5. In livers from unoperated control rats, the nuclear concentration of Ap4A was slightly elevated compared to that of whole cells. dTTP was only investigated in regenerating liver. 6. Significantly higher concentrations were found in the nuclear fractions. 7. The purest nuclei contained about 26% of whole cell levels of dTTP, while their RNA values had decreased to 7% of the whole cell RNA. 8. Considering that the liver cell nucleus comprises about 7% of the entire cell mass, a nuclear dTTP concentration of 26% indicates significantly higher dTTP levels in the nuclear compartment than in the cytoplasm of regenerating rat liver cells.  相似文献   

18.
Diadenosine polyphosphates (Ap(x)A) are physiologically released and may be partly involved in the pathogenesis of diabetes mellitus. Ap(4)A (diadenosine tetraphosphate) leads to an increase in blood glucose while it decreases insulin levels in plasma. A possible link between Ap(x)A and diabetes mellitus-associated diseases such as insulin resistance and hyperlipidemia (plasma free fatty acids, cholesterol and its biosynthesis, triacylglycerols) has not been investigated yet. Parameters such as free fatty acid and cholesterol content in blood were determined enzymically. The biosynthesis of cholesterol and triacylglycerols was determined in HepG2 cells using the radioactive precursor [(14)C]-acetate and by using gas chromatography. Plasma free fatty acids were significantly decreased 5 and 10 min after an Ap(4)A bolus (0.75 mg kg(-1) b.w.) given to rats. Plasma cholesterol was reduced 5 and 60 min after Ap(4)A administration. LPDS (lipoprotein-deficient serum)-stimulated cholesterol biosynthesis in HepG2 cells was significantly reduced after 1 h incubation with Ap(4)A. Triacylglycerol (TAG) biosynthesis in HepG2 cells was not significantly influenced by Ap(4)A; there was just a tendency for a concentration-dependent decrease in TAG levels. In conclusion Ap(4)A as a diabetogenetic compound is not likely to be responsible for the development of insulin resistance or of hyperlipidemia. Parameters such as free fatty acids, cholesterol and triacylglycerols are not elevated by Ap(4)A, but are even decreased. Ap(4)A seems to be involved in the development of diabetes mellitus by increasing blood glucose and decreasing plasma insulin as shown earlier, but not in diabetes mellitus-associated diseases such as insulin resistance or hyperlipidemia.  相似文献   

19.
Sea urchin embryos were labeled with [3H]adenosine at two developmental stages (morula and prism) and the labeled acid-soluble nucleotides were fractionated successively by column chromatography with DEAE-Sephadex and DEAE-cellulose, and by thin-layer chromatography on a PEI-cellulose plate. Significant radioactivity was detected on the PEI-cellulose plate at the region of diadenosine 5',5'-P1,P4-tetraphosphate (AP4A). After treatment of this fraction with phosphodiesterase, the radioactivity was all recovered in the AMP region, while alkaline phosphatase had no effect on the AP4A fraction. The present result suggests that AP4A is actively synthesized in the sea urchin embryos.  相似文献   

20.
Asymmetrical diadenosine 5',5'-P(1)P(4) tetraphosphate (Ap(4)A) hydrolases are key enzymes controlling the in vivo concentration of Ap(4)A--an important signaling molecule involved in regulation of DNA replication and repair, signaling in stress response and apoptosis. Sequence homologies indicate that the genome of the model plant Arabidopsis thaliana contains at least three open reading frames encoding presumptive Ap(4)A hydrolases: At1g30110, At3g10620, and At5g06340. In this work we present efficient overexpression and detailed biochemical characteristics of the AtNUDX25 protein encoded by the At1g30110 gene. Aided by the determination of the binding constants of Mn(Ap(4)A) and Mg(Ap(4)A) complexes using isothermal titration calorimetry (ITC) we show that AtNUDX25 preferentially hydrolyzes Ap(4)A in the form of a Mn(2+) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号