首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

2.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

3.
The hydrolysis of substrates (maltoheptaose, maltopentaose, and maltotetraose) catalyzed by soybean beta-amylase [EC 3.2.1.2] at pH 5.4 and 25 degrees C was followed by monitoring small changes in the quenching of fluorescence due to tryptophan residues by the stopped-flow method. By analysis of whole time course, the dissociation constants, KdS, of enzyme-substrate and enzyme-product complexes were reasonably evaluated; and the difference in fluorescence intensities per mol between the enzyme-complex (ES or EP) and the free enzyme, delta F, was determined. The molecular activity, k0, was also determined by a new method of half time analysis. The KdS and k0 values are in good agreement with our kinetic data reported previously. The delta Fs of substrates were of smaller magnitude than those of products (G2 and G3), which means that the higher the binding affinity of the ligand is, the smaller the delta F value is. This indicates that at least two tryptophan residues must be located in the active site if the enzyme is rigid, or that if there is only one, the active site must undergo a structural change caused by the binding of ligand.  相似文献   

4.
Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors.  相似文献   

5.
The proteolytic enzyme stromelysin-1 is a member of the family of matrix metalloproteinases and is believed to play a role in pathological conditions such as arthritis and tumor invasion. Stromelysin-1 is synthesized as a pro-enzyme that is activated by removal of an N-terminal prodomain. The active enzyme contains a catalytic domain and a C-terminal hemopexin domain believed to participate in macromolecular substrate recognition. We have determined the three-dimensional structures of both a C-truncated form of the proenzyme and an inhibited complex of the catalytic domain by X-ray diffraction analysis. The catalytic core is very similar in the two forms and is similar to the homologous domain in fibroblast and neutrophil collagenases, as well as to the stromelysin structure determined by NMR. The prodomain is a separate folding unit containing three alpha-helices and an extended peptide that lies in the active site of the enzyme. Surprisingly, the amino-to-carboxyl direction of this peptide chain is opposite to that adopted by the inhibitor and by previously reported inhibitors of collagenase. Comparison of the active site of stromelysin with that of thermolysin reveals that most of the residues proposed to play significant roles in the enzymatic mechanism of thermolysin have equivalents in stromelysin, but that three residues implicated in the catalytic mechanism of thermolysin are not represented in stromelysin.  相似文献   

6.
The binding of two 5-substituted-1,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (P1-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-155 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzyme/inhibitor complexes, the S1'' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity.  相似文献   

7.
The effects of tricyclic antidepressants drugs (TCA) amitriptyline, imipramine and nortriptyline, on purified Electrophorus electricus (L.) acetylcholinesterase (AChE; acetylcholine hydrolase, EC 3.1.1.7) were studied using kinetic methods and specific fluorescent probe propidium. The antidepressants inhibited AChE activity by a non-competitive mechanism. Inhibition constants range from 200 to 400 microM. Dimethylated amitriptyline and imipramine were more potent inhibitors than the monomethylated nortriptyline. Fluorescence measurements using bis-quaternary ligand propidium were used to monitor ligand-binding properties of these cationic antidepressants to the AChE peripheral anionic site (PAS). This ligand exhibited an eight-fold fluorescence enhancement upon binding to the peripheral anionic site of AChE from E. electricus (L.) with K(D)=7 x 10(-7)M. It was observed that TCA drugs displaced propidium from the enzyme. On the basis of the displacement experiments antidepressant dissociation constants were determined. Similar values for the inhibition constants suggest that these drugs have similar affinity to the peripheral anionic site. The results also indicate that the catalytic active center of AChE does not participate in the interaction of enzyme with tricyclic antidepressants. These studies suggest that the binding site for tricyclic antidepressants is located at the peripheral anionic site of E. electricus (L.) acetylcholinesterase.  相似文献   

8.
A new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc. The pyrimidine triones mimic substrates in forming hydrogen bonds to key residues in the active site, and provide opportunities for placing appropriately chosen groups into the S1' specificity pocket of MMPS: A number of compounds have been synthesized and assayed against stromelysin, and the variations in potency are explained in terms of the binding mode revealed in the X-ray crystal structure.  相似文献   

9.
Spectroscopic examination of the active site of bovine ferrochelatase   总被引:2,自引:0,他引:2  
H A Dailey 《Biochemistry》1985,24(6):1287-1291
Spectrofluorometric techniques have been employed to examine the active site of the terminal enzyme of the heme biosynthetic pathway, ferrochelatase (protoheme ferrolyase, EC 4.99.1.1). The fluorescence of both endogenous tryptophan and exogenous 2-(4-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) has been examined. The fluorescence emission of the enzyme's active site bound MIANS is at 428 nm while the enzyme tryptophan(s) yielded a single fluorescence emission maximum at 347 nm. These values are characteristic of a polar environment for tryptophan and a relatively nonpolar environment for the MIANS. The dynamic fluorescence quenching constants for acrylamide of MIANS and tryptophan are 3.00 M-1 and 1.85 M-1, respectively. Quenching constants for KI of both fluorescent centers were approximately 1 M-1. These data suggest that both fluorophores are poorly accessible to the external anionic contact quencher but that an unchanged quencher, while larger, is still better able to penetrate the enzyme's active site. The extrapolated anisotropies (r0) for ferrochelatase-bound MIANS and tryptophan are 0.198 and 0.307. The dissociation constant (KD) determined by fluorescence anisotropy of protoporphyrin was 1.5 microM with the calculated number of porphyrin binding sites as 1.0 per 40000 daltons. A model is presented for the active site of ferrochelatase based upon the data presented here and previously. This model proposes that the active site is a hydrophobic pocket similar in nature to the heme binding crevices found in many hemoproteins.  相似文献   

10.
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.  相似文献   

11.
Bovine brain glyoxalase I was investigated in order to identify amino acid residues essential for its catalytic activity. This enzyme is a 44-kDa dimeric protein which exhibits a characteristic intrinsic fluorescence, with an emission peak centered at 342 nm. The total of eight tryptophan residues/molecule was estimated by using a fluorescence titration method. Low values of Stern Volmer quenching constants for the quenchers used indicated that the tryptophan residues are relatively buried in the native molecule. Similar results were obtained for glyoxalase I, purified from yeast and human erythrocytes. The activity of bovine brain glyoxalase I was found to be particularly sensitive to 2,3-butanedione and diethylpyrocarbonate, selective reagents for arginine and histidine residues, respectively. A minor effect was observed by treatment of the enzyme with other amino acid-specific reagents. A protective effect of the competitive inhibitor S-hexylglutathione was observed for all reagents used, indicating the presence of modified amino acids in or near the enzyme active site.  相似文献   

12.
There is a high level of conservation of tryptophans within the active site architecture of the cellulase family, whereas the function of the four tryptophans in the catalytic domain of Cel7A is unclear. By mutating four tryptophan residues in the catalytic domain of Cel7A from Penicillium piceum (PpCel7A), the binding affinity between PpCel7A and p-nitrophenol-d -cellobioside (pNPC) was reduced as determined by Michaelis–Menten constants, molecular dynamics simulations, and fluorescence spectroscopy. Furthermore, PpCel7A variants showed a reduced level of cellobiohydrolase (CBH) activity against cellulose analogs or natural cellulose. Therefore, it could be concluded four tryptophan residues in Cel7A played a critical role in substrate binding. Mutagenesis results indicated that the W390 stacking interactions at the −2 site played an essential role in facilitating substrate distortion to the −1 site. As soon as the function was altered, the mutation would inevitably affect the catalytic activity against the natural substrate. Interestingly, no clear relationship was found between the CBH activity of PpCel7A variants against pNPC and Avicel. p-Nitrophenol contains many electrophilic groups that may result in overestimation of the binding constant between tryptophan residues and pNPC in comparison with the natural substrate. Consequently, screening improved cellulase using cellulose analogs would divert attention from the target direction for lignocellulose biorefinery. Clarifying mechanism of catalytic diversity on the natural cellulose or cellulose analogs may give better insight into cellulase screening and selecting strategy.  相似文献   

13.
The active site of an apoptotic enzyme caspase-3 was characterized by measuring the intrinsic fluorescence of two tryptophan residues. Temperature dependence of the intrinsic fluorescence, the energy homotransfer between the tryptophan residues, and the fluorescence quenching by tetrapeptide inhibitors were investigated by the fluorescence lifetime measurements. It has been observed that the fluorescence lifetimes of caspase-3 in complex with inhibitors were significantly shortened by the electron transfer process.  相似文献   

14.
1. Five and four tryptophan residues in Taka-amylase A [EC 3.2.1.1] of A. oryzae (TAA) were modified with dimethyl(2-hydroxy-5-nitrobenzyl)-sulfonium bromide (K-IWS) in the absence and the presence of 15% maltose (substrate analog), respectively. Only one tryptophan residue was modified with dimethyl(2-methoxy-5-nitrobenzyl)-sulfonium bromide (K-IIWS) irrespective of the presence or absence of maltose. Kinetic parameters (molecular activity, k0, Michaelis constant, Km, and inhibitor constant, Ki) of the enzyme modified with K-IWS and K-IIWS were determined. The k0 value decreased with increase in the number of modified residues, but Km and Ki values and the type of inhibition were not altered by the modification. 2. The fluorescence quenching reaction of TAA with N-bromosuccinimide (NBS) proceeded in three phases. The second-order rate constants of the three phases were determined to be (4.3 +/- 0.5) x 10(5) M-1 . s-1, (2.1 +/- 0.3) x 10(3) M-1 . s-1 and (1.7 +/- 0.2) x 10(2) M-1 . s-1, respectively. In the presence of maltose, the first phase was further separated into two phases with rate constants of (4.6 +/- 0.6) x 10(6) M-1 . s-1 and (6.9 +/- 1.1) x 10(4) M-1 . s-1, respectively. On the basis of the results, it is estimated that five out of nine tryptophan residues are accessible to the solvent and among them, two tryptophan residues are substantially exposed: one is located in the maltose binding site near the catalytic site (its modification affects the catalytic function), and the other exists on the enzyme surface far from the active site.  相似文献   

15.
Phosphoglycollohydroxamic acid and phosphoglycollamide are inhibitors of rabbit muscle fructose-1,6-bisphosphate aldolase. The binding dissociation constants determined by enzyme inhibition and protein fluorescence quenching suggest that two distinct enzyme inhibitor complexes may be formed. The binding dissociation constants of the two inhibitors to Bacillus stearothermophilus cobalt (II) fructose-1,6-bisphosphate aldolase have also been determined. The hydroxamic acid is an exceptionally potent inhibitor (Ki = 1.2 nM) probably due to direct chelation with Co(II) at the active site. The inhibition, however, is time-dependant and the association and dissociation constants have been estimated. Ethyl phosphoglycollate irreversibly inhibits rabbit muscle fructose-1,6-bisphosphate aldolase in the presence of sodium borohydride, presumably by forming a stable secondary amine through the active-site lysine reside. A new condensation assay for fructose-1,6-bisphosphate aldolases has been developed which is more sensitive than currently used assay procedures.  相似文献   

16.
This work describes the purification of a beta-glucosidase (beta-D-glucoside-glucohydrolase EC 3.2.1.21) from the digestive juice of Helix pomatia and the study of the enzyme's active site by using different reversible and irreversible inhibitors. The catalytic constants of arylglycosides and their pH-dependent variations have also been determined. The inhibition studies demonstrate that conduritol epoxides are irreversible inhibitors of beta-glucosidase from the digestive juice of H. pomatia, and that nojirimicin shows tight binding with glucosidase: the formation and dissociation of the enzyme-inhibitor complex (dissociation constant 1.1 mumol/1) required several minutes.  相似文献   

17.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

18.
Low-density lipoproteins (LDL) play a key role in the delivery of photosensitizers to tumor cells in photodynamic therapy. The interaction of deuteroporphyrin, an amphiphilic porphyrin, with LDL is examined at equilibrium and the kinetics of association/dissociation are determined by stopped-flow. Changes in apoprotein and porphyrin fluorescence suggest two classes of bound porphyrins. The first class, characterized by tryptophan fluorescence quenching, involves four well-defined sites. The affinity constant per site is 8.75 x 10(7) M(-1) (cumulative affinity 3.5 x 10(8) M(-1)). The second class corresponds to the incorporation of up to 50 molecules into the outer lipidic layer of LDL with an affinity constant of 2 x 10(8) M(-1). Stopped-flow experiments involving direct LDL porphyrin mixing or porphyrin transfer from preloaded LDL to albumin provide kinetic characterization of the two classes. The rate constants for dissociation of the first and second classes are 5.8 and 15 s(-1); the association rate constants are 5 x 10(8) M(-1) s(-1) per site and 3 x 10(9) M(-1) s(-1), respectively. Both fluorescence and kinetic analysis indicate that the first class involves regions at the boundary between lipids and the apoprotein. The kinetics of porphyrin-LDL interactions indicates that changes in the distribution of photosensitizers among various carriers could be very sensitive to the specific tumor microenvironment.  相似文献   

19.
The enzymes involved in the biosynthesis of riboflavin represent attractive targets for the development of drugs against bacterial pathogens, because the inhibitors of these enzymes are not likely to interfere with enzymes of the mammalian metabolism. Lumazine synthase catalyzes the penultimate step in the riboflavin biosynthesis pathway. A number of substituted purinetrione compounds represent a new class of highly specific inhibitors of lumazine synthase from Mycobacterium tuberculosis. To develop potent antibiotics for the treatment of tuberculosis, we have determined the structure of lumazine synthase from M. tuberculosis in complex with two purinetrione inhibitors and have studied binding via isothermal titration calorimetry. The structures were determined by molecular replacement using lumazine synthase from Saccharomyces cerevisiae as a search model and refined at 2 and 2.3 A resolution. The R-factors were 14.7 and 17.4%, respectively, and the R(free) values were 19.3 and 26.3%, respectively. The enzyme was found to be a pentamer consisting of five subunits related by 5-fold local symmetry. The comparison of the active site architecture with the active site of previously determined lumazine synthase structures reveals a largely conserved topology with the exception of residues Gln141 and Glu136, which participate in different charge-charge interactions in the core space of the active site. The impact of structural changes in the active site on the altered binding and catalytic properties of the enzyme is discussed. Isothermal titration calorimetry measurements indicate highly specific binding of the purinetrione inhibitors to the M. tuberculosis enzyme with dissociation constants in micromolar range.  相似文献   

20.
The binding of the GSH to the GSH transferase pi quenches the protein intrinsic fluorescence more than the binding of GS-Me. The calculated dissociation constants are 38.6 microM and 90.9 microM for GSH and GS-Me, respectively. From the reported data it is evident that the binding of GSH to GSH transferase pi quenches the intrinsic fluorescence with two different mechanisms. The first one is a conformational change induced by the binding of the GSH and it is present also with the GS-Me binding. A second proposed mechanism is a contact quenching between the sulphydryl GSH group and a tryptophan residue. This suggests that at least one of the tryptophan residues is located near the GSH binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号