首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wybenga-Groot LE  Baskin B  Ong SH  Tong J  Pawson T  Sicheri F 《Cell》2001,106(6):745-757
The Eph receptor tyrosine kinase family is regulated by autophosphorylation within the juxtamembrane region and the kinase activation segment. We have solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited, unphosphorylated form of EphB2 comprised of the juxtamembrane region and the kinase domain. The structure, supported by mutagenesis data, reveals that the juxtamembrane segment adopts a helical conformation that distorts the small lobe of the kinase domain, and blocks the activation segment from attaining an activated conformation. Phosphorylation of conserved juxtamembrane tyrosines would relieve this autoinhibition by disturbing the association of the juxtamembrane segment with the kinase domain, while liberating phosphotyrosine sites for binding SH2 domains of target proteins. We propose that the autoinhibitory mechanism employed by EphB2 is a more general device through which receptor tyrosine kinases are controlled.  相似文献   

2.
ZAP-70 and Syk are essential tyrosine kinases in intracellular immunological signaling. Both contain an inhibitory SH2 domain tandem, which assembles onto the catalytic domain. Upon binding to doubly phosphorylated ITAM motifs on activated antigen receptors, the arrangement of the SH2 domains changes. From available structures, this event is not obviously conducive to dissociation of the autoinhibited complex, yet it ultimately translates into kinase activation through a mechanism not yet understood. We present a comprehensive theoretical study of this molecular mechanism, using atomic resolution simulations and free-energy calculations, totaling >10 μs of simulation time. Through these, we dissect the microscopic mechanism coupling stepwise ITAM engagement and SH2 tandem structural change and reveal key differences between ZAP-70 and Syk. Importantly, we show that a subtle conformational bias in the inter-SH2 connector causes ITAM to bind preferentially to kinase-dissociated tandems. We thus propose that phosphorylated antigen receptors selectively recruit kinases that are uninhibited and that the resulting population shift in the membrane vicinity sustains signal transduction.  相似文献   

3.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

4.
Folmer RH  Geschwindner S  Xue Y 《Biochemistry》2002,41(48):14176-14184
The protein kinase ZAP-70 is involved in T-cell activation, and interacts with tyrosine-phosphorylated peptide sequences known as immunoreceptor tyrosine activation motifs (ITAMs), which are present in three of the subunits of the T-cell receptor. We have studied the tandem SH2 (tSH2) domains of ZAP-70, by both X-ray and NMR. Here, we present the crystal structure of the apoprotein, i.e., the tSH2 domain in the absence of ITAM. Comparison with the previously reported complex structure reveals that binding to the ITAM peptide induces surprisingly large movements between the two SH2 domains and within the actual binding sites. The conformation of the ITAM-free protein is partly governed by a hydrophobic cluster between the linker region and the C-terminal SH2 domain. Our data suggest that the two SH2 domains are able to undergo large interdomain movements. The proposed relative flexibility of the SH2 domains is further supported by the finding that no NMR signals could be detected for the two helices connecting the SH2 domains; these are likely to be broadened beyond detection due to conformational exchange. It is likely that this conformational reorientation induced by ITAM binding is the main signaling event activating the kinase domain in ZAP-70. Another NMR observation was that the N-terminal SH2 domain could bind tetrapeptides derived from the ITAM sequence, apparently without the need to interact with the C-terminal domain. In contrast, the C-terminal domain has little affinity for tetrapeptides. The opposite situation is true for binding to plain phosphotyrosine, where the C-terminal domain has a higher affinity. Distinct features in the crystal structure, showing the interdependence of both domains, explain these binding data.  相似文献   

5.
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.  相似文献   

6.
Bcr-Abl is a dysregulated tyrosine kinase whose mechanism of activation is unclear. Here, we demonstrate that, like c-Abl, Bcr-Abl is negatively regulated through its SH3 domain. Kinase activity, transformation, and leukemogenesis by Bcr-Abl are greatly impaired by mutations of the Bcr coiled-coil domain that disrupt oligomerization, but restored by an SH3 point mutation that blocks ligand binding or a complementary mutation at the intramolecular SH3 binding site defined in c-Abl. Phosphorylation of tyrosines in the activation loop of the catalytic domain and the linker between the SH2 and catalytic domains (SH2-CD linker) is dependent on oligomerization and required for leukemogenesis. These results suggest that Bcr-Abl has a monomeric, unphosphorylated state with the SH3 domain engaged intramolecularly to Pro1124 in the SH2-CD linker, the form that is sensitive to the inhibitor imatinib (STI-571). The sole function of the coiled-coil domain is to disrupt the autoinhibited conformation through oligomerization and intermolecular autophosphorylation.  相似文献   

7.
Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.  相似文献   

8.
The protein tyrosine kinase ZAP-70, which mediates T-cell antigen receptor (TCR) signalling, contains three distinct functional modules, two tandemly arranged SH2 domains, a kinase domain and a linker region (interdomain B) that connects them. ZAP-70 enzymatic activation is strictly dependent on the binding, via its SH2 domains, to the triggered TCR and on tyrosine phosphorylation. Here we utilized recombinant ZAP-70 and carried out a mutational analysis to understand the structural requirements for its activation. We show that deletion of both SH2 domains corresponding to the first 254 residues moderately increases ZAP-70 enzymatic activity on an exogenous substrate in vitro, results in increased tyrosine phosphorylation and produces subtle conformational changes, as judged by altered SDS/PAGE migration. Mutation of Tyr292, 315 and 319 to Phe in the interdomain B region, which constitute the major phosphorylation sites both in vitro and in vivo, did not affect ZAP-70 enzymatic activity. Moreover, deletion analysis of the interdomain B region established residues 320-619 as a minimal region endowed with full kinase activity. We propose that binding of ZAP-70 to the TCR promotes, through conformational changes, its extensive phosphorylation on tyrosine. However, Tyr292, 315 and 319 do not affect ZAP-70 enzymatic activity and may influence ZAP-70 signalling only indirectly by mediating its association with intracellular transducers.  相似文献   

9.
Src family protein-tyrosine kinases are regulated by intramolecular binding of the SH2 domain to the C-terminal tail and association of the SH3 domain with the SH2 kinase-linker. The presence of two regulatory interactions raises the question of whether disruption of both is required for kinase activation. To address this question, we engineered a high affinity linker (HAL) mutant of the Src family member Hck in which an optimal SH3 ligand was substituted for the natural linker. Surface plasmon resonance analysis demonstrated tight intramolecular binding of the modified HAL sequence to SH3. Hck-HAL was then combined with a tail tyrosine mutation (Y501F) and expressed in Rat-2 fibroblasts. Surprisingly, Hck-HAL-Y501F showed strong transforming and kinase activities, demonstrating that intramolecular SH3-linker release is not required for SH2-based kinase activation. In Saccharomyces cerevisiae, which lacks the negative regulatory tail kinase Csk, wild-type Hck was more strongly activated in the presence of an SH3-binding protein (human immunodeficiency virus-1 Nef), indicating persistence of native SH3-linker interaction in an active Hck conformation. Taken together, these data support the existence of multiple active conformations of Src family kinases that may generate unique downstream signals.  相似文献   

10.
The catalytic activity of Syk‐family tyrosine kinases is regulated by a tandem Src homology 2 module (tSH2 module). In the autoinhibited state, this module adopts a conformation that stabilizes an inactive conformation of the kinase domain. The binding of the tSH2 module to phosphorylated immunoreceptor tyrosine‐based activation motifs necessitates a conformational change, thereby relieving kinase inhibition and promoting activation. We determined the crystal structure of the isolated tSH2 module of Syk and find, in contrast to ZAP‐70, that its conformation more closely resembles that of the peptide‐bound state, rather than the autoinhibited state. Hydrogen–deuterium exchange by mass spectrometry, as well as molecular dynamics simulations, reveal that the dynamics of the tSH2 modules of Syk and ZAP‐70 differ, with most of these differences occurring in the C‐terminal SH2 domain. Our data suggest that the conformational landscapes of the tSH2 modules in Syk and ZAP‐70 have been tuned differently, such that the autoinhibited conformation of the Syk tSH2 module is less stable. This feature of Syk likely contributes to its ability to more readily escape autoinhibition when compared to ZAP‐70, consistent with tighter control of downstream signaling pathways in T cells.  相似文献   

11.
The tyrosine kinase c-Abl is inactivated by interactions made by its SH3 and SH2 domains with the distal surface of the kinase domain. We present a crystal structure of a fragment of c-Abl which reveals that a critical N-terminal cap segment, not visualized in previous structures, buttresses the SH3-SH2 substructure in the autoinhibited state and locks it onto the distal surface of the kinase domain. Surprisingly, the N-terminal cap is phosphorylated on a serine residue that interacts with the connector between the SH3 and SH2 domains. Small-angle X-ray scattering (SAXS) analysis shows that a mutated form of c-Abl, in which the N-terminal cap and two other key contacts in the autoinhibited state are deleted, exists in an extended array of the SH3, SH2, and kinase domains. This alternative conformation of Abl is likely to prolong the active state of the kinase by preventing it from returning to the autoinhibited state.  相似文献   

12.
ABL family tyrosine kinases are tightly regulated by autoinhibition and phosphorylation mechanisms. These kinases maintain an inactive conformation through intramolecular interactions involving SH3 and SH2 domains. RIN1, a downstream effector of RAS, binds to the ABL SH3 and SH2 domains and stimulates ABL tyrosine kinase activity. RIN1 binding to the ABL2 kinase resulted in a large decrease in Km and a small increase in Vmax toward an ABL consensus substrate peptide. The enzyme efficiency (k(cat)/Km) was increased more than 5-fold by RIN1. In addition, RIN1 strongly enhanced ABL-mediated phosphorylation of CRK, PSTPIP1, and DOK1, all established ABL substrates but with unique protein structures and distinct target sequences. Importantly RIN1-mediated stimulation of ABL kinase activity was independent of activation by SRC-mediated phosphorylation. RIN1 increased the kinase activity of both ABL1 and ABL2, and this occurred in the presence or absence of ABL regulatory domains outside the SH3-SH2-tyrosine kinase domain core. We further demonstrate that a catalytic site mutation associated with broad drug resistance, ABL1T315I, remains responsive to stimulation by RIN1. These findings are consistent with an allosteric kinase activation mechanism by which RIN1 binding promotes a more accessible ABL catalytic site through relief of autoinhibition. Direct disruption of RIN1 binding may therefore be a useful strategy to suppress the activity of normal and oncogenic ABL, including inhibitor-resistant mutants that confound current therapeutic strategies. Stimulation through derepression may be applicable to many other tyrosine kinases autoinhibited by coupled SH3 and SH2 domains.  相似文献   

13.
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.  相似文献   

14.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

15.
The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.  相似文献   

16.
The tyrosine-based activation motif is a 20- to 25-amino-acid sequence contained in the cytoplasmic domains of many hematopoietic receptors which is sufficient by itself to reconstitute signalling. This motif is characterized by two YXXL/I sequences separated by approximately 10 residues. The molecular basis of signalling by this motif is unknown. Here we demonstrate that the tyrosine-based activation motif is required and sufficient for association with the tyrosine kinases p59fyn and ZAP-70, suggesting that association with these kinases is a general feature of this motif. Focusing on the single activation motif present in epsilon, we analyzed which residues of the motif were critical for binding of p59fyn and ZAP-70. Surprisingly, we found that no single mutation of any residue of epsilon resulted in the loss of p59fyn association. In contrast, single mutations at five residues of the epsilon activating motif abrogated ZAP-70 binding. Both of the tyrosines and the leucine or isoleucine residues that follow them were critical. The spacing between the tyrosines was also important, as deletion of two residues disrupted binding of ZAP-70, although p59fyn binding was not disrupted. Most of the defined features of the tyrosine activation motif are therefore requirements for ZAP-70 binding. Interestingly, the interaction of ZAP-70 with the motif was dependent on the presence of both ZAP-70 SH2 domains and both of the tyrosine residues in the motif, suggesting that ZAP-70 interacts with two phosphotyrosine residues and that the binding of the two SH2 domains is cooperative. In addition, we demonstrate that the interaction between the tyrosine activation motif is direct and requires prior tyrosine phosphorylation of the motif. We propose that the activation of cells by the tyrosine activating motif occurs in four discrete steps: binding of p59fyn, phosphorylation of the motif, binding of ZAP-70, and activation of ZAP-70 kinase activity.  相似文献   

17.
The protein tyrosine kinase ZAP-70 is implicated in the early steps of the T-cell antigen receptor (TCR) signaling. Binding of ZAP-70 to the phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the TCR zeta chain through its two src-homology 2 (SH2) domains results in its activation coupled to phosphorylation on multiple tyrosine residues, mediated by Src kinases including Lck as well as by autophosphorylation. The mechanism of ZAP-70 activation following receptor binding is still not completely understood. Here we investigated the effect of intramolecular interactions and autophosphorylation by following the kinetics of recombinant ZAP-70 activation in a spectrophotometric substrate phosphorylation assay. Under these conditions, we observed a lag phase of several minutes before full ZAP-70 activation, which was not observed using a truncated form lacking the first 254 residues, suggesting that it might be due to an intramolecular interaction involving the interdomain A and SH2 region. Accordingly, the lag phase could be reproduced by testing the truncated form in the presence of recombinant SH2 domains and was abolished by the addition of diphosphorylated ITAM peptide. Preincubation with ATP or phosphorylation by Lck also abolished the lag phase and resulted in a more active enzyme. The same results were obtained using a ZAP-70 mutant lacking the interdomain B tyrosines. These findings are consistent with a mechanism in which ZAP-70 phosphorylation/autophosphorylation on tyrosine(s) other than 292, 315, and 319, as well as engagement of the SH2 domains by the phosphorylated TCR, can induce a conformational change leading to accelerated enzyme kinetics and higher catalytic efficiency.  相似文献   

18.
ZAP-70, a Syk family cytoplasmic protein tyrosine kinase (PTK), is required to couple the activated T-cell antigen receptor (TCR) to downstream signaling pathways. It contains two tandem SH2 domains that bind to phosphorylated TCR subunits and a C-terminal catalytic domain. The region connecting the SH2 domains with the kinase domain, termed interdomain B, has previously been shown to have striking regulatory effects on ZAP-70 function, presumed to be due to the recruitment of key substrates. Paradoxically, deletion of interdomain B preserves ZAP-70 function. Recent structural studies of several receptor tyrosine kinases (RTKs) revealed that their juxtamembrane regions negatively regulate their catalytic activities. In EphB2 and several other RTKs, this autoinhibition depends upon interaction between the kinase domain and tyrosine residues within the juxtamembrane region. Autoinhibition is released when these tyrosines become phosphorylated following receptor stimulation. Sequence homology suggested analogous regulation for ZAP-70. Based on mutagenesis analysis of ZAP-70 interdomain B, we find that this region downregulates ZAP-70 catalytic activity in a similar manner as the juxtamembrane region of EphB2. Similar regulation was also noted for the related Syk kinase. These findings suggest that a general autoinhibitory mechanism employed by RTKs is also used by some cytoplasmic tyrosine kinases.  相似文献   

19.
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions.  相似文献   

20.
Antigenic stimulation of the T-cell antigen receptor initiates signal transduction through the immunoreceptor tyrosine-based activation motifs (ITAMs). When its two tyrosines are phosphorylated, ITAM forms a binding site for ZAP-70, one of the cytoplasmic protein tyrosine kinases essential for T-cell activation. The signaling process that follows ZAP-70 binding to ITAM has been analyzed by the construction of fusion proteins that localize ZAP-70 to the plasma membrane. We found that membrane-localized forms of ZAP-70 induce late signaling events such as activation of nuclear factor of activated T cells without any stimulation. This activity was observed only when Lck was expressed and functional. In addition, each mutation that affects the function of Lck in the kinase, Src homology 2 (SH2), and SH3 domains greatly impaired the signaling ability of the chimeric protein. Therefore, Lck functions in multiple manners in T-cell activation for the steps following ZAP-70 binding to ITAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号