首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Michi Miura 《FEBS letters》2010,584(11):2351-2355
We visualized the nucleotide-dependent behavior of single molecules of mammalian native cytoplasmic dynein using fragments of dynactin p150 with or without its N-terminal microtubule binding domain. The results indicate that the binding affinity of dynein for microtubules is high in AMP-PNP, middle in ADP or no nucleotide, and low in ADP·Pi conditions. It is also demonstrated that the microtubule binding domain of dynactin p150 maintains the association of dynein with microtubules without altering the motile property of dynein in the weak binding state. In addition, we observed bidirectional movement of dynein in the presence of ATP as well as in ADP/Vi condition, suggesting that the bidirectional movement is driven by diffusion rather than active transport.  相似文献   

2.
The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.  相似文献   

3.
Previous studies have shown that the motility of flagellar and ciliary axonemes in many organisms are influenced by the concentration of both ATP and ADP. Detergent-extracted cell models of Chlamydomonas oda1, a mutant lacking flagellar outer-arm dynein, displayed slightly lower flagellar beating frequencies when reactivated with ATP in the presence of an ATP-regenerating system, composed of creatine phosphate and creatine phosphokinase, than when reactivated with ATP alone. Thus, presence of a low concentration of ADP may somehow stimulate axonemal motility. To see if this motility stimulation is due to a direct effect on dynein, we analyzed the effect of ADP on the in vitro microtubule translocation caused by isolated inner-arm dyneins in the presence of ATP. Of the seven inner-arm dyneins (species a-g) fractionated by ion-exchange chromatography, most species translocated microtubules at faster speed in the presence of 0.1 mM ATP and 0.1 mM ADP than in the presence of 0.1 mM ATP alone. Most notably, species a and e did not translocate microtubules at all in the presence of the ATP-regenerating system, indicating that a trace amount of ADP is necessary for their motility. This regulation may be effected through binding of ADP to some of the four nucleotide binding sites in each dynein heavy chain.  相似文献   

4.
Kon T  Nishiura M  Ohkura R  Toyoshima YY  Sutoh K 《Biochemistry》2004,43(35):11266-11274
Cytoplasmic dynein is a microtubule-based motor protein that is responsible for most intracellular retrograde transports along microtubule filaments. The motor domain of dynein contains six tandemly linked AAA (ATPases associated with diverse cellular activities) modules, with the first four containing predicted nucleotide-binding/hydrolysis sites (P1-P4). To dissect the functions of these multiple nucleotide-binding/hydrolysis sites, we expressed and purified Dictyostelium dynein motor domains in which mutations were introduced to block nucleotide binding at each of the four AAA modules, and then examined their detailed biochemical properties. The P1 mutant was trapped in a strong-binding state even in the presence of ATP and lost its motile activity. The P3 mutant also showed a high affinity for microtubules in the presence of ATP and lost most of the microtubule-activated ATPase activity, but retained microtubule sliding activity, although the sliding velocity of the mutant was more than 20-fold slower than that of the wild type. In contrast, mutation in the P2 or P4 site did not affect the apparent binding affinity of the mutant for microtubules in the presence of ATP, but reduced ATPase and microtubule sliding activities. These results indicate that ATP binding and its hydrolysis only at the P1 site are essential for the motor activities of cytoplasmic dynein, and suggest that the other nucleotide-binding/hydrolysis sites regulate the motor activities. Among them, nucleotide binding at the P3 site is not essential but is critical for microtubule-activated ATPase and motile activities of cytoplasmic dynein.  相似文献   

5.
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.  相似文献   

6.
A model for the unidirectional movement of dynein is presented based on the structuralobservations and biochemical experimental results available.In this model,the binding affinity of dynein formicrotubule (MT) is independent of its nucleotide state and the change between strong and weak MT-bindingis determined naturally by the variation of relative orientation between the stalk and MT,as the stalk rotatesfollowing nucleotide-state transition.Thus the enigmatic communication from the adenosine triphosphate(ATP)-binding site in the globular domain to the far MT-binding site in the tip of the stalk,which is aprerequisite in conventional models,is not required.Using the present model,the previous experimentalresults such as the effect of ATP and adenosine diphosphate (ADP) bindings on dissociation of dynein fromMT,the movement of single-headed axonemal dyneins at saturating ATP concentration,the load dependenceof step-size for the movement of two-headed cytoplasmic dyneins and the dependence of stall force on ATPconcentration can be well explained.  相似文献   

7.
Microtubules accelerate ADP release by dynein   总被引:4,自引:0,他引:4  
E L Holzbaur  K A Johnson 《Biochemistry》1989,28(17):7010-7016
The effects of microtubules on the phosphate-water oxygen exchange reactions catalyzed by dynein were examined in order to determine the mechanism by which microtubules activate the ATPase. Microtubules inhibited the rate of medium exchange observed during net ATP hydrolysis. Inhibition of the exchange reaction was proportional to the extent of microtubule activation of ATP turnover with no effect on the partition coefficient. These data argue that microtubules do not increase the rate of release of phosphate from dynein; rather, they increase the rate of ADP release. Microtubules markedly inhibited medium phosphate-water exchange reactions observed in the presence of ADP and Pi. With increasing concentrations of ADP, the rate of exchange increased in parallel to the dissociation of dynein from the microtubules, suggesting that only free dynein and not the microtubule-dynein complex catalyzes the exchange reaction. The rates of dynein binding to microtubules in the absence and presence of saturating ADP were 1.6 X 10(6) and 9.8 X 10(5) M-1 s-1, respectively. ADP inhibited the rate of the ATP-induced dissociation of the microtubule-dynein complex with an apparent Kd = 0.37 mM for the binding of ADP to the microtubule-dynein complex. However, the rate of dissociation of ADP from the M.D.ADP complex was quite fast (approximately 1000 s-1). These data support the postulate of a high-energy dynein-ADP intermediate and indicate that microtubules activate the dynein ATPase by enhancing the rate of ADP release.  相似文献   

8.
Axonemal dyneins are force-generating ATPases that produce ciliary and flagellar movement. A dynein has large heavy chain(s) in which there are multiple (4-6) ATP-binding consensus sequences (P-loops) as well as intermediate and light chains, constituting a very large complex. We purified a monomeric form of dynein (dynein-a) that has at least three light chains from 14S dyneins of Tetrahymena thermophila and characterized it. In in vitro motility assays, dynein-a rotated microtubules around their longitudinal axis as well as translocated them with their plus-ends leading. ATPase activity at 1 mM ATP was doubled in the presence of a low level of ADP (> or = 20 microM). Both ATPase activity and translocational velocities in the presence of ADP (> or = 20 microM) fit the Michaelis-Menten equation well. However, in the absence of ADP (< 0.1 microM), neither of the activities followed the Michaelis-Menten-type kinetics, probably due to the effect of two ATP-binding sites. Our results also indicate that dynein-a has an ATP-binding site that is very sensitive to ADP and affects ATP hydrolysis at the catalytic site. This study shows that a monomeric form of a dynein molecule regulates its activity by direct binding of ATP and ADP to itself, and thus the dynein molecule has an intramolecular regulating system.  相似文献   

9.
1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2'-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site. 4. The nucleotide specificities of 'coupled processes' nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.  相似文献   

10.
Illumination of chloroplast thylakoid membranes results in both the release of adenine nucleotides from the tight nucleotide binding site(s) on chloroplast coupling factor 1 (CF1) and the activation of a light-triggered ATPase activity of CF1. Because inorganic phosphate stabilizes the light-triggered ATPase activity of CF1 in the dark, the effects of Pi on the rebinding of ADP to CF1 and on the light-triggered ATPase activity have been studied. Pi appears to be a partial noncompetitive inhibitor, with respect to ADP, of adenine nucleotide binding to the tight nucleotide binding site(s) on CF1 and induces negative cooperativity. The latter result suggests the existence of heterogeneous ADP binding sites in the presence of Pi. However, even under conditions where Pi causes a 50% reduction of tightly bound ADP, the ADP-induced dark decay of the ATPase activity is still complete. It was found that Pi inhibition of the light-induced dark binding of ADP can be reversed by the removal of the Pi. Removal of Pi also induces a small but significant ATPase activity. A model for the roles of the adenine nucleotide tight binding site(s) and Pi in the modulation of the spinach CF1 ATPase activity is proposed.  相似文献   

11.
BackgroundThe SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail.MethodsWe performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 μs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks.ResultsATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed.ConclusionsA protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide.General significanceWe identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.  相似文献   

12.
Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of DeltaR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. DeltaR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of approximately 100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for DeltaR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH2-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation.  相似文献   

13.
The 13S coupling factor of oxidative phosphorylation from Alcaligenes faecalis forms an unusually stable complex with ADP which can be isolated by simple gel filtration. Most preparations of enzyme exhibit an apparent binding ratio of 1 mol of ADP per mol of enzyme with a dissociation constant of approximately 15 μm. One mol of adenylyl imidodiphosphate (AMP-PNP) also binds, with a dissociation constant of about 3 μm. A constant could not be obtained from ATP binding studies because this nucleotide is hydrolyzed by the enzyme. Competition studies suggest that both ADP and AMP-PNP bind to the same site. Bound nucleotides are in a very slow equilibrium with free nucleotides, with a turnover time of 1–2 h. The rate of radionucleotide dissociation from the isolated enzyme-nucleotide complex increases when unlabeled nucleotide is added, suggesting that binding of nucleotide to one site on the enzyme allosterically promotes dissociation of nucleotide from another site. A nucleotide-induced “flip-flop” type of oscillation of the properties of the nucleotide binding sites on the coupling factor is proposed. From a comparison of the kinetic parameters of the intrinsic adenosinetriphosphatase activity and the nucleotide binding parameters of the enzyme population in toto, it is suggested that the enzyme exhibits functional polymorphism.  相似文献   

14.
ATP and ADP are known to play inhibitory and activating roles, respectively, in the regulation of dynein motile activity of flagella. To elucidate how these nucleotide functions are related to the regulation of normal flagellar beating, we examined their effects on the motility of reactivated sea urchin sperm flagella at low pH. At pH 7.0-7.2 which is lower than the physiological pH of 8, about 90% of reactivated flagella were motionless at 1 mM ATP, while about 60% were motile at 0.02 mM ATP. The motionless flagella at 1 mM ATP maintained a single large bend or an S-shaped bend, indicating formation of dynein crossbridges in the axoneme. The ATP-dependent inhibition of flagellar movement was released by ADP, and was absent in outer arm-depleted flagella. Similar inhibition was also observed at 0.02 mM ATP when demembranated flagella were reactivated in the presence of Li+ or pretreated with protein phosphatase 1 (PP1). ADP also released this type of ATP-inhibition. In PP1-pretreated axonemes the binding of a fluorescent analogue of ADP to dynein decreased. Under elastase-treatment at pH 8.0, the beating of demembranated flagella at 1 mM ATP and 0.02 mM ATP lasted for approximately 100 and 45 s, respectively. The duration of beating at 0.02 mM ATP was prolonged by Li+, and that at 1 mM ATP was shortened by removal of outer arms. These results indicate that the regulation of on/off switching of dynein motile activity of flagella involves ATP-induced inhibition and ADP-induced activation, probably through phosphorylation/dephosphorylation of outer arm-linked protein(s).  相似文献   

15.
Binding of ADP to rat brain hexokinase provided protection against inactivation of the enzyme by glutaraldehyde or by chymotryptic digestion. Graphical analysis of the inactivation experiments was, in both cases, consistent with the existence of a single ADP binding site and a Kd ≈ 3mM for the hexokinase-ADP complex. Both Cibacron Blue F3GA and tetraiodofluorescein, previously found to have a general affinity for nucleotide binding sites, were competitive (vs. ATP) inhibitors of the enzyme, suggesting that they bound only to the site occupied by the nucleotide substrate, ATP. While alternate interpretations cannot be excluded, it is felt that these results are most consistent with the view that there is a single nucleotide binding site on the enzyme. They thereby may serve to stimulate a search for alternative explanations for the complex inhibitory pattern of ADP which had previously been attributed to the existence of two ADP binding sites on the enzyme (J. Ning, D.L. Purich, and H.J. Fromm, J. Biol. Chem. 244, 3840–3846 (1969).  相似文献   

16.
The roles of ADP2- and Mg2+ in control steps of phosphoglycerate kinase   总被引:1,自引:0,他引:1  
1H-NMR measurements were made of solutions of yeast phosphoglycerate kinase containing the nucleotide, ADP, and Mg2+ in varying concentrations in order to investigate the affect that the metal ion has on the mode of ADP binding to the enzyme. A preliminary study of adenosine binding to phosphoglycerate kinase was made in order to be sure of the nature of the adenine site. From the change in chemical shifts of the 'basic patch' histidine resonances (His62, 167 and 170), the nucleotide C8-H, C2-H and C1'-H resonances and resonances 40 and 41 (assigned to Thr373 and Thr375 in the hydrophobic, i.e. catalytic, site), it is apparent that there are at least two ADP binding sites on the enzyme: one at the hydrophobic (catalytic) site and one at the electrostatic site. A comparison of the results for ADP and ATP reveals differences due to the differential binding of the phosphate groups. The presence of Mg2+ results in further differences being observed. The data suggest that the primary binding site of ADP, in the absence of Mg2+, involves electrostatic interactions between the diphosphate chain of the substrate and the 'basic patch' region of the N-terminal domain. In the presence of greater than or equal to 1:1 ratio of Mg2+/ADP, however, the primary binding site involves predominantly hydrophobic interactions between the adenosine moiety and the catalytic site, with secondary binding occurring at the electrostatic site. Addition of Mg2+, therefore, tends to reduce the affinity of the electrostatic site (presumably by competing for ADP). It is suggested that alpha-helix XII, including residues 372, 373 and 375, moves differentially on binding ADP, Mg ADP, ATP or Mg . ATP, consistent with Mg2+ assisting the transfer of the gamma-phosphate of ATP to 3-phosphoglycerate during catalysis.  相似文献   

17.
Two activators of microtubule-based vesicle transport   总被引:44,自引:23,他引:21       下载免费PDF全文
Cytoplasmic dynein purified by nucleotide dependent microtubule affinity has significant minus end-directed vesicle motor activity that decreases with each further purification step. Highly purified dynein causes membrane vesicles to bind but not move on microtubules. We exploited these observations to develop an assay for factors that, in combination with dynein, would permit minus end-directed vesicle motility. At each step of the purification, non-dynein fractions were recombined with dynein and assayed for vesicle motility. Two activating fractions were identified by this method. One, called Activator I, copurified with 20S dynein by velocity sedimentation but could be separated from it by ion exchange chromatography. Activator I increased only the frequency of dynein-driven vesicle movements. Activator II, sedimenting at 9S, increased both the frequency and velocity of vesicle transport and also supported plus end movements. Our results suggest that dynein-based motility is controlled at multiple levels and provide a preliminary characterization of two regulatory factors.  相似文献   

18.
The Mg2+-induced low-affinity nucleotide binding by (Na+ + K+)-ATPase has been further investigated. Both heat treatment (50-65 degrees C) and treatment with N-ethylmaleimide reduce the binding capacity irreversibly without altering the Kd value. The rate constant of inactivation is about one-third of that for the high-affinity site and for the (Na+ + K+)-ATPase activity. Thermodynamic parameters (delta H degree and delta S degree) for the apparent affinity in the ATPase reaction (Km ATP) and for the true affinity in the binding of AdoPP[NH]P (Kd and Ki) differ greatly in sign and magnitude, indicating that one or more reaction steps following binding significantly contribute to the Km value, which thus is smaller than the Kd value. Ouabain does not affect the capacity of low-affinity nucleotide binding, but only increases the Kd value to an extent depending on the nucleotide used. GTP and CTP appear to be most sensitive, ATP and ADP intermediately sensitive and AdoPP[NH]P and AMP least sensitive to ouabain. Ouabain reduces the high-affinity nucleotide binding capacity without affecting the Kd value. The nucleotide specificity of the low-affinity binding site is the same for binding (competition with AdoPP[NH]P) and for the ATPase activity (competition with ATP): AdoPP[NH]P greater than ATP greater than ADP greater than AMP. The low-affinity nucleotide binding capacity is preserved in the ouabain-stabilized phosphorylated state, and the Kd value is not increased more than by ouabain alone. It is inferred that the low-affinity site is located on the enzyme, more specifically its alpha-subunit, and not on the surrounding phospholipids. It is situated outside the phosphorylation centre. The possible functional role of the low-affinity binding is discussed.  相似文献   

19.
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3'-phosphate 5'-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp(136), which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.  相似文献   

20.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号