首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 105 毫秒
1.
冷蒿(Atemisia frigida)种群在放牧干扰下构件的变化   总被引:1,自引:0,他引:1  
王静  杨持  王铁娟 《生态学报》2006,26(3):960-965
对放牧干扰下冷蒿种群构件的变化进行了研究.结果表明:在放牧干扰下,冷蒿种群营养枝和生殖枝高度在轻度放牧时缓慢下降,在中度、重度放牧后,枝条高度迅速下降.随着放牧强度的增加,冷蒿种群的营养枝密度和不定根密度增加,分枝密度和个体大小之间存在一定补偿特性,营养枝密度的回归曲线表明重牧下冷蒿的营养枝密度已接近补偿阈值.随着放牧强度的增加,冷蒿种群匍匐茎长度显著地增加;生殖枝密度在轻度放牧增加,到中度放牧后生殖枝数急剧减少,重度放牧下生殖枝基本消失.枝条的性别分化发生变化,生殖枝的分化率(生殖枝密度/总枝条密度)降低.与此同时,营养枝的分化率却随着放牧强度的增加而增加.伴随之,冷蒿种群繁殖格局也发生了重大的调整.  相似文献   

2.
大仓鼠种群遗传多样性的季节性变化   总被引:5,自引:0,他引:5  
通过随机扩增多态性DNA(RAPD)方法,我们对河北省固安县牛驼镇王龙村附近的大仓鼠(Cricetuls triton)种群的遗传多样性进行了研究。结果显示,在209个大仓鼠个体中(春季60只,夏季45只,秋季59只,冬季45只),共扩增出87条带,其中86.2%原条带具有多态性,4个季节种群的遗传组成存在季节变化,其多态位点数,多态位点比率,Shannon多样性指数及Nei指数的大小顺序均一致表现为:秋季种群<冬季种群<夏季种群<春季种群;秋季种群的遗传多态性最低,春季最强;遗传多态性与种群密度(夹捕率,%),之间呈极显著的负相关关系。此结果表明遗传因素与大仓鼠种群动态有密切关系,但季节间遗传多态的变化不支持Ford假说,我们认为增殖和扩散共同决定了季节间遗传多样变化的规律。  相似文献   

3.
青蛤两个异域种群的遗传多样性与分化研究   总被引:13,自引:0,他引:13  
利用RAPD技术对分布于中国辽宁庄河(LZ)及广东惠东(GH)的两个青蛤(Cyclinasinensis)野生种群遗传多样性及其遗传分化进行了分析。22个10碱基引物从两个种群分别扩增到179和181条扩增谱带,全部扩增片段长度在210—2850bp之间。根据扩增结果计算出两个种群的多态位点比例(P)分别为76.92%和81.31%,平均杂合度(H)分别为0.2815和0.3012。两种群间遗传距离(D)和近交系数(Fst)分别达到0.103及0.1997,结果表明两个异域种群不但遗传多态性较高,而且出现了明显的种群分化现象。文章还初步讨论了青蛤种群分化的机制、遗传结构与异地引种关系等问题。    相似文献   

4.
高山嵩草种群在放牧干扰下遗传多样性的变化   总被引:1,自引:0,他引:1       下载免费PDF全文
利用SRAP (Sequence-related amplified polymorphism)分子标记, 对放牧干扰下的高山嵩草(Kobresia pygmaea)种群进行了遗传多样性研究, 获得了下述结果: 1) 20对SRAP引物组合共检测出448条清晰条带, 其中376条条带具有多态性, 多态位点百分率为83.93%, 随着放牧强度的增加, 高山嵩草种群多态位点百分数、Nei’s遗传多样性指数、Shannon信息指数均下降。2)高山嵩草种群具有较高的遗传多样性和较低的遗传分化(总的遗传多样性Ht为0.276 6, 种群内遗传多样性Hs为0.243 6, 遗传分化系数Gst为0.119 4, 基于Gst估计的基因流Nm*为1.843 4), 但随着放牧强度的增加, Gst增加, Nm*降低, 说明放牧限制了种群间的基因交流, 使种群发生遗传分化。3)不同放牧梯度的高山嵩草种群间的遗传距离很小, 但是随着放牧强度的增加, 种群间的遗传距离逐渐增加, 遗传一致度降低。根据遗传距离所构建的UPGMA聚类图中高山嵩草4个种群随着牧压的增加, 逐级聚在一起。  相似文献   

5.
浙江省境内七子花天然种群遗传多样性研究   总被引:11,自引:3,他引:11  
利用RAPD技术对浙江省境内的七子花9个天然种群遗传多样性和遗传分化进行研究.结果表明,12种随机引物对180棵植物进行检测,共得到164个可重复的位点.多态位点百分率在14.60%~27.44%(平均为20.73%),以括苍山种群最高,其次是四明山种群,最低是观音坪种群.Shannon指数和Nei指数均反映出七子花各种群具有较低的遗传多样性,但遗传分化明显.Shannon指数显示种群内遗传多样性只占总遗传多样性的27.28%,而种群间遗传多样性却占72.72%;Nei指数表明种群内的遗传变异较小,种群间的遗传变异较大,种群间的遗传分化系数为0.7157.七子花种群间的基因流为0.1987,遗传相似度平均为0.7306,遗传距离平均为0.3150,各种群间的遗传分化明显.根据遗传距离聚类分析,大致可以将9个七子花种群分为东部和西部两大类群.  相似文献   

6.
冷蒿种群在不同放牧强度胁迫下构件的变化规律   总被引:29,自引:4,他引:29  
在中国科学院草原生态系统定位研究站的羊草草原放牧退化系列上,选定无放牧(已围栏保护了20a的羊草样地)、轻度放牧、中度放牧、重度放牧的不同牧压梯度地段,采用样方法调查冷蒿的构件数量特征。结果表明冷蒿的营养枝数、不定根数、匍匐茎长在4个梯度上均有显著差异,而且都随牧压增大而增加,但不定根间的平均距离(匍匐茎长/不定根数)与营养枝数/不定根数两项却不随牧压变化而变化。就生物量而言,各构件干重在4个梯度间也有显著差异,而且随牧压增大而增加。在相应梯度上所做的25cm×25cm×10cm土体根量数据亦有相似的规律。  相似文献   

7.
大别山山核桃种群遗传多样性研究   总被引:4,自引:1,他引:4       下载免费PDF全文
为了更有效地保护和合理开发大别山山核桃(Carya dabieshanensis)资源,该文利用RAPD分子标记技术,对3个天然大别山山核桃种群的90个单株的遗传多样性、种群内和种群间的遗传变异进行了研究,结果表明:20对10 bp随机引物共检测到238条谱带,其中多态带为162条,占68.1%。遗传多样性分析结果显示: Shannon多样性指数为0.476 1,58.18%的变异分布于群体内,而种群间变异占了41.82%;Nei指数群体总基因多样度为0.314 5,群体内平均基因多样度(HS)为0.186 5,群体间的基因多样度(HST)为0.128 0,群体Nei基因分化系数(GST)为0.406 7,说明40.67%的变异存在于种群间,群体内的变异占了总变异的59.33%,与Shannon多样性指数相比基本一致,均表明种群内有较丰富的遗传变异,这为优良品种选育提供广阔前景;种群间的基因流(Nm)为0.730 6,证明种群间遗传交换较小,这与环境适应性和高山阻隔有一定的关系。  相似文献   

8.
不同尺度下野大豆种群的遗传分化   总被引:26,自引:4,他引:26  
为了阐明不同尺度范围内野大豆种群的遗传分化情况,应用随机扩增多态性DNA(RAPD)方法,分别对我国5个纬度8个不同地点的野大豆(Glycine soja)种群及浙江金华地区5个野大豆种群,进行了分子生态学研究。根据RAPD数据计算相似系数及遗传距离并进行聚类分析,发现无论是不同纬度野大豆种群还是金华地区野大豆小种群均存在较高的遗传变异,且不同纬度野大豆种群间的遗传变异与地理纬度有一定正相关。在对金华地区野大豆种群遗传多样怀的研究,利用Shannon指数估算了5个野大豆种群的遗传多样性,发现大部分的遗传变异存在于野大豆种群间(78.5%),只有少部分的遗传变异存在于种群内。本就此探讨了不同尺度下野大豆种群的遗传多样性与环境因子的关系,并对其成因及维持机制进行了讨论。  相似文献   

9.
闽楠天然种群遗传多样性的RAPD分析   总被引:7,自引:0,他引:7  
利用RAPD分子标记分析了闽楠主要分布区江西和福建两省的8个天然种群的遗传多样性和种群遗传分化.应用12条引物从160个植株中共检测到135个位点,其中多态位点134个.RAPD数据经Lynch-Milligan矫正后利用POPGENE软件计算出种群间遗传分化系数GST为0.373;利用Shannon多样性表型指数估算出46.4%的变异存在于种群间;分子方差分析(AMOVA)亦显示种群间变异占43.3%(P<0.001).尽管遗传变异主要存在于种群内,但闽楠种群间亦存在强烈的遗传分化,这可能与闽楠种群生境片断化、地理隔离等有关.根据闽楠的遗传变异特点,建议尽可能多地保护闽楠天然种群,对遗传多样性较高的福建西芹、浦城、明溪等种群应予以重点保护,同时收集各地闽楠遗传资源进行迁地保护,并通过种群扩繁以及合理回归自然等方式扩大种群规模、增强种群间的基因流,以维持其遗传多样性水平.  相似文献   

10.
苹果蠹蛾是重要的世界性果树害虫,寄主广泛,通过形成各种生态型或种群适应新入侵环境,对当地果品生产造成严重损失。本文综述了国内外有关苹果蠹蛾遗传多样性的研究进展。相关研究表明,寄主植物、地理隔离和杀虫剂等因素影响种群间的遗传多样性和遗传分化。其中,地理隔离是种群间形成遗传分化的主要原因之一,寄主分布格局、气候条件、虫体飞行能力和人为活动等因素都会影响种群间遗传分化的程度。苹果蠹蛾是我国重要的入侵害虫,我国东北地区和西北地区的苹果蠹蛾种群具有不同的遗传多样性水平,并且种群间有一定程度的分化,今后需要进一步研究影响我国苹果蠹蛾种群遗传的重要因素,明确该虫种群间分化情况、入侵来源和扩散路径,这对于延缓苹果蠹蛾在我国的扩散,制定合理有效的综合防治策略具有重要意义。  相似文献   

11.
不同放牧强度下冷蒿种群小尺度空间格局   总被引:33,自引:4,他引:33  
刘振国  李镇清 《生态学报》2004,24(2):227-234
时间、空间格局的发展和维持及其对种群和生态系统的影响一直是生态学研究的中心议题 ,这些问题的核心是观察的尺度怎样影响格局的描述。冷蒿 (Artemisia frigida)种群伴随着典型草原退化演替的各个阶段 ,对其所在群落的结构和功能具有重要的影响。应用 Ripley's K函数以及蒙特卡罗 (Monte Carlo)随机模拟方法 ,定量分析了 4种放牧强度下冷蒿种群在 0~10 0 cm尺度上的空间格局及其随尺度的变化规律 ;研究了放牧对冷蒿种群空间格局的影响以及冷蒿在放牧胁迫下的生态适应对策。并以放牧条件下冷蒿的生活史特征、生态适应对策以及群落内植物种间的相互作用为基础 ,探讨产生和维持这些格局的机理。研究结果表明 :1放牧对冷蒿种群空间格局有显著影响。同一放牧强度下冷蒿种群在不同尺度 (0~ 10 0 cm)上的空间格局存在显著差异 ;2在 0~ 10 0 cm尺度上 ,无牧、轻牧条件下冷蒿种群的空间格局为聚集分布 ;中牧条件下在 0~ 6 0 cm尺度上冷蒿种群的空间格局为聚集分布 ,而在 6 0~ 10 0 cm尺度上为均匀分布 ;重牧条件下在 0~ 72 cm尺度上冷蒿种群的空间格局为聚集分布 ,而在 72~ 10 0 cm尺度上为均匀分布 ,这与其自身的生物学特性和种群对放牧压力的生态适应对策密切相关 ;3放牧活动的加剧改变了群落中的各种  相似文献   

12.
放牧退化群落中冷蒿种群生物量资源分配的变化   总被引:15,自引:1,他引:15  
王静  杨持  王铁娟 《应用生态学报》2005,16(12):2316-2320
对放牧退化群落中冷蒿种群生物量及生物量资源分配的变化进行了研究.结果表明,在放牧干扰下,随着放牧退化程度的增加,冷蒿种群叶、茎、根的生物量及总生物量增加.其中根的重量增加幅度较大,但生殖构件(花序、果实)的生物量在轻度退化群落中增加,中度退化群落中迅速减少,重度退化群落中未发现生殖构件.随着放牧退化程度增加,冷蒿种群生物量的资源分配发生变化,对根的分配增加,对茎、叶的分配减少,根冠比增加;对无性繁殖的分配增加,对有性生殖的分配减少.在重度退化群落,冷蒿有性生殖严重受阻,繁殖格局发生变化.从资源分配的动态来看,随着放牧退化程度的增加,生长初期至盛期,冷蒿种群资源优先分配给地上部分,尤其是光合器官叶;而生长盛期至末期,资源优先分配给有性生殖或贮藏器官.繁殖格局的转变是冷蒿种群耐牧,在重度退化下成为建群种的关键.资源分配格局的时空变化,使生长、维持和繁殖等方面的分配达到和谐,是冷蒿种群在重度退化下成为建群种的物质基础.  相似文献   

13.
不同刈牧强度对冷蒿生长与资源分配的影响   总被引:15,自引:0,他引:15  
利用野外实验与盆栽实验,对不同刈牧强度下冷蒿生长与资源分配影响的研究结果表明,按比例刈割冷篙的再生生长大于留茬高度刈割,在生长季前期,不刈割冷蒿净生长高于刈割处理,而进入生长季中后期(8月中旬以后),轻度刈割净生长高于不刈割处理,冷篙种群生物量分配的总体格局是根>叶>茎,刈牧明显影响冷蒿生物量分配格局,尤其是叶和花的分配,3/4刈割或留茬4cm刈割叶生物量分配显著高于其它各处理,而花的生物量及其分配显著低于其它处理,根、茎生物量分配各处理间差异不显著.冷蒿有性生殖分配随刈牧强度的增加而降低,繁殖方式发生了改变,优先将光合产物分配给再生茎以及繁殖方式转向营养繁殖,通过克隆生长维持和扩大种群是冷蒿对强度放牧的生态适应对策。  相似文献   

14.
冷蒿草原土壤可萌发种子库特征及其对放牧的响应   总被引:26,自引:3,他引:26  
(1)采用萌发试验法对内蒙古冷蒿(Artemisia frigida)草原土壤种子特征及其在不同放牧压力下的变化进行了研究。(2)冷蒿草原可萌发种子库由4种多年生禾草,11种种多年生杂草及3种1年生植物所组成。(3)每样中的可萌发种子是变化于45到305之间,平均102/样。多年生禾草、多年生杂类草及1年生植物的土壤中种子量分别占总可萌发种子库的46.57%、51.96%和1.57%。多年和禾 草  相似文献   

15.
邓传良  刘建  周坚   《广西植物》2007,27(3):401-405
利用RAPD标记对长筒石蒜3个居群的遗传多样性及分化程度进行了研究。12条随机引物扩增出94个可分析位点,多态位点比率(PPB)为65.96%,表明长筒石蒜具有比较高的遗传多样性。经POP-GENE32分析表明:Nei’s基因多样性指数(h)为0.1897,香农多样性指数(Ⅰ)为0.2945,基因分化系数(GST)为0.1191,基因流(Nm)为3.6980。经WINAMOVA分析表明:居群内遗传变异占71.75%,而居群间只占28.25%。遗传多样性分析表明,各居群的遗传多样性水平由高到低为琅琊山居群>宝华山居群>盱眙居群。遗传分化表明:长筒石蒜各居群间遗传分化程度较低;大部分遗传变异存在于居群内部,表明其具有较强的进化潜力,自然情况下不会处于濒危状态,野生种质资源的破坏,主要来自于人为干扰。  相似文献   

16.
The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures were observed. Plant samples were collected from a series of grazing gradients of the Stipa grandis steppe in Dalinuoer National Nature Reserve in the Inner Mongolia (located at 116°38′–116°41′E and 43°25′–43°27′N.), which has the following vegetation types in abundance: Leymus chinensis is the constructive species; the dominant species include Stipa grandis, Cleistogenes squarrosa, and Artemisia frigida; the companion species is Potentilla acaulis and others. According to the grazing pressure, the following four grazing gradients were identified from the dwellings of the herdsmen to the enclosure site: (1) no grazing (CK enclosure site); (2) light grazing (LG); (3) moderate grazing (MG); (4) heavy grazing (HG). Young leaves of each Stipa grandis were collected during the growing season. The results showed that the Stipa grandis showed abundant genetic diversity despite the fact that certain polymorphic loci were lost; at the same time, new polymorphic loci emerged when grazing pressure increased; a total of 10 primers were used, and 74 bands were produced in total, of which 65 bands were polymorphic; the total percentage of polymorphism was 89%; the percentage of polymorphic loci of the Stipa grandis population decreased with the increase of grazing pressure; the percentage of polymorphic loci was 62.2% in the no-grazing (CK) population, 64.9% in the light-grazing (LG) population, 58.1% in the moderate-grazing (MG) population, and 56.8% in the heavy-grazing (HG) population; the genetic diversity of the population in the descending order using the Shannon's information index is as follows: (1) light grazing (0.3486); (2) no grazing (0.3339); (3) moderate grazing (0.3249); (4) heavy grazing (0.2735) with the same distributional pattern as the Nei's genetic diversity index. The test showed the following: As the grazing pressures increased, the change of genetic diversity decreased; the genetic differentiation coefficient among the population (Gst) was 0.1984, which showed the presence of small partial genetic diversity (19.8%) among populations; gene flow (Nm*) between primers varied from 0.9806 to 3.4463, and the mean gene flow (Nm*) was 2.0202; the UPGMA cluster figure that was constructed on the basis of the genetic distance matrix showed four populations that became genetically closer at each step: (1) The first group was the moderate-grazing (MG) population and the heavy- grazing (HG) population; (2) The second group consisted of the no-grazing (CK) population and the light-grazing (LG) population; (3) The two groups gathered together.  相似文献   

17.
天然红松群体遗传多样性的RAPD分析   总被引:18,自引:0,他引:18  
夏铭  周晓峰  赵士洞 《生态学报》2001,21(5):730-737
用RAPD技术分析了分布于中国东北的3个红松(Pinus koraiensis Seib.et Zucc.)天然群体的遗传多样性及群体间的遗传分化。38个随机引物共检测到241个可重复的位点,其中多态位点139个,占总位点的57.68%。Shannon信息指数和Nei指数的统计结果都表明,红松种内的遗传变异主要存在于群体内,凉水群体的遗传多样性水平高于黑河、虎林群体。群体内遗传相似度为0.927,群体间为0.845。红松现阶段对偏低的遗传多样性水平与第四纪冰期所遭受的严重打击和人类近期的干扰有较大关系。  相似文献   

18.
采用RAPD技术分析了山西省菜粉蝶5个地域种群间的遗传多样性和遗传关系,用筛选出的12对引物扩增共得到143条带,其中127(88.8%)条带具有多态性,5个种群变异程度由大到小的顺序为:大同的(76.3%)>太原的(74.7%)>长治的(74.5%)>代县的(73.7%)>夏县的(70.7%).Shannon's信息指数分析结果显示大多数变异发生在种群内(73.7%).种群间的Nei's遗传距离较低(均<0.1).用UPGMA和 Neighbor-joining做的基于RAPD标记的Nei's遗传距离的聚类图显示,各种群内的个体首先聚在一起,种群之间有一定分化,5个地域种群间较远距离的代县种群与夏县种群遗传关系最近并优先相聚.经过对试验结果的分析讨论认为:环境类型及其生态条件对山西省菜粉蝶地域种群的遗传多样性和遗传变异产生了重要的影响,其中农药的施用对菜粉蝶种群遗传结构的影响有可能是深刻的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号