首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A method for detecting positive selection at single amino acid sites   总被引:23,自引:0,他引:23  
A method was developed for detecting the selective force at single amino acid sites given a multiple alignment of protein-coding sequences. The phylogenetic tree was reconstructed using the number of synonymous substitutions. Then, the neutrality was tested for each codon site using the numbers of synonymous and nonsynonymous changes throughout the phylogenetic tree. Computer simulation showed that this method accurately estimated the numbers of synonymous and nonsynonymous substitutions per site, as long as the substitution number on each branch was relatively small. The false-positive rate for detecting the selective force was generally low. On the other hand, the true-positive rate for detecting the selective force depended on the parameter values. Within the range of parameter values used in the simulation, the true-positive rate increased as the strength of the selective force and the total branch length (namely the total number of synonymous substitutions per site) in the phylogenetic tree increased. In particular, with the relative rate of nonsynonymous substitutions to synonymous substitutions being 5.0, most of the positively selected codon sites were correctly detected when the total branch length in the phylogenetic tree was > or = 2.5. When this method was applied to the human leukocyte antigen (HLA) gene, which included antigen recognition sites (ARSs), positive selection was detected mainly on ARSs. This finding confirmed the effectiveness of the present method with actual data. Moreover, two amino acid sites were newly identified as positively selected in non-ARSs. The three-dimensional structure of the HLA molecule indicated that these sites might be involved in antigen recognition. Positively selected amino acid sites were also identified in the envelope protein of human immunodeficiency virus and the influenza virus hemagglutinin protein. This method may be helpful for predicting functions of amino acid sites in proteins, especially in the present situation, in which sequence data are accumulating at an enormous speed.  相似文献   

3.
Nucleotide substitution in both coding and noncoding regions is context-dependent, in the sense that substitution rates depend on the identity of neighboring bases. Context-dependent substitution has been modeled in the case of two sequences and an unrooted phylogenetic tree, but it has only been accommodated in limited ways with more general phylogenies. In this article, extensions are presented to standard phylogenetic models that allow for better handling of context-dependent substitution, yet still permit exact inference at reasonable computational cost. The new models improve goodness of fit substantially for both coding and noncoding data. Considering context dependence leads to much larger improvements than does using a richer substitution model or allowing for rate variation across sites, under the assumption of site independence. The observed improvements appear to derive from three separate properties of the models: their explicit characterization of context-dependent substitution within N-tuples of adjacent sites, their ability to accommodate overlapping N-tuples, and their rich parameterization of the substitution process. Parameter estimation is accomplished using an expectation maximization algorithm, with a quasi-Newton algorithm for the maximization step; this approach is shown to be preferable to ordinary Newton methods for parameter-rich models. Overlapping tuples are efficiently handled by assuming Markov dependence of the observed bases at each site on those at the N - 1 preceding sites, and the required conditional probabilities are computed with an extension of Felsenstein's algorithm. Estimated substitution rates based on a data set of about 160,000 noncoding sites in mammalian genomes indicate a pronounced CpG effect, but they also suggest a complex overall pattern of context-dependent substitution, comprising a variety of subtle effects. Estimates based on about 3 million sites in coding regions demonstrate that amino acid substitution rates can be learned at the nucleotide level, and suggest that context effects across codon boundaries are significant.  相似文献   

4.
MOTIVATION: Maximum-likelihood analysis of nucleotide and amino acid sequences is a powerful approach for inferring phylogenetic relationships and for comparing evolutionary hypotheses. Because it is a computationally demanding and time-consuming process, most algorithms explore only a minute portion of tree-space, with the emphasis on finding the most likely tree while ignoring the less likely, but not significantly worse, trees. However, when such trees exist, it is equally important to identify them to give due consideration to the phylogenetic uncertainty. Consequently, it is necessary to change the focus of these algorithms such that near optimal trees are also identified. RESULTS: This paper presents the Advanced Stepwise Addition Algorithm for exploring tree-space and two algorithms for generating all binary trees on a set of sequences. The Advanced Stepwise Addition Algorithm has been implemented in TrExML, a phylogenetic program for maximum-likelihood analysis of nucleotide sequences. TrExML is shown to be more effective at finding near optimal trees than a similar program, fastDNAml, implying that TrExML offers a better approach to account for phylogenetic uncertainty than has previously been possible. A program, TreeGen, is also described; it generates binary trees on a set of sequences allowing for extensive exploration of tree-space using other programs. AVAILABILITY: TreeGen, TrExML, and the sequence data used to test the programs are available from the following two WWW sites: http://whitetail.bemidji.msus. edu/trexml/and http://jcsmr.anu.edu.au/dmm/humgen.+ ++html.  相似文献   

5.
The covarion hypothesis of molecular evolution proposes that selective pressures on an amino acid or nucleotide site change through time, thus causing changes of evolutionary rate along the edges of a phylogenetic tree. Several kinds of Markov models for the covarion process have been proposed. One model, proposed by Huelsenbeck (2002), has 2 substitution rate classes: the substitution process at a site can switch between a single variable rate, drawn from a discrete gamma distribution, and a zero invariable rate. A second model, suggested by Galtier (2001), assumes rate switches among an arbitrary number of rate classes but switching to and from the invariable rate class is not allowed. The latter model allows for some sites that do not participate in the rate-switching process. Here we propose a general covarion model that combines features of both models, allowing evolutionary rates not only to switch between variable and invariable classes but also to switch among different rates when they are in a variable state. We have implemented all 3 covarion models in a maximum likelihood framework for amino acid sequences and tested them on 23 protein data sets. We found significant likelihood increases for all data sets for the 3 models, compared with a model that does not allow site-specific rate switches along the tree. Furthermore, we found that the general model fit the data better than the simpler covarion models in the majority of the cases, highlighting the complexity in modeling the covarion process. The general covarion model can be used for comparing tree topologies, molecular dating studies, and the investigation of protein adaptation.  相似文献   

6.
Cheng Q  Su Z  Zhong Y  Gu X 《Gene》2009,441(1-2):156-162
Recent studies have shown that heterogeneous evolution may mislead phylogenetic analysis, which has been neglected for a long time. We evaluate the effect of heterogeneous evolution on phylogenetic analysis, using 18 fish mitogenomic coding sequences as an example. Using the software DIVERGE, we identify 198 amino acid sites that have experienced heterogeneous evolution. After removing these sites, the rest of sites are shown to be virtually homogeneous in the evolutionary rate. There are some differences between phylogenetic trees built with heterogeneous sites ("before tree") and without heterogeneous sites ("after tree"). Our study demonstrates that for phylogenetic reconstruction, an effective approach is to identify and remove sites with heterogeneous evolution, and suggests that researchers can use the software DIVERGE to remove the influence of heterogeneous evolution before reconstructing phylogenetic trees.  相似文献   

7.
A few models have appeared in recent years that consider not only the way substitutions occur through evolutionary history at each site of a genome, but also the way the process changes from one site to the next. These models combine phylogenetic models of molecular evolution, which apply to individual sites, and hidden Markov models, which allow for changes from site to site. Besides improving the realism of ordinary phylogenetic models, they are potentially very powerful tools for inference and prediction--for example, for gene finding or prediction of secondary structure. In this paper, we review progress on combined phylogenetic and hidden Markov models and present some extensions to previous work. Our main result is a simple and efficient method for accommodating higher-order states in the HMM, which allows for context-dependent models of substitution--that is, models that consider the effects of neighboring bases on the pattern of substitution. We present experimental results indicating that higher-order states, autocorrelated rates, and multiple functional categories all lead to significant improvements in the fit of a combined phylogenetic and hidden Markov model, with the effect of higher-order states being particularly pronounced.  相似文献   

8.

Background  

Widely used substitution models for proteins, such as the Jones-Taylor-Thornton (JTT) or Whelan and Goldman (WAG) models, are based on empirical amino acid interchange matrices estimated from databases of protein alignments that incorporate the average amino acid frequencies of the data set under examination (e.g JTT + F). Variation in the evolutionary process between sites is typically modelled by a rates-across-sites distribution such as the gamma (Γ) distribution. However, sites in proteins also vary in the kinds of amino acid interchanges that are favoured, a feature that is ignored by standard empirical substitution matrices. Here we examine the degree to which the pattern of evolution at sites differs from that expected based on empirical amino acid substitution models and evaluate the impact of these deviations on phylogenetic estimation.  相似文献   

9.
Both traditional as well as 10 more recent methods of coding characters from exons of protein‐coding genes are reviewed. The more recent methods collectively blur the distinction between nucleotide and amino‐acid coding and enable investigators to carefully quantify the effects of different sources of phylogenetic signal as well as their potential biases. Codon models, which explicitly model silent and replacement substitutions, are a major advance and are expected to be broadly useful for simultaneously inferring recent and ancient divergences, unlike amino‐acid coding. Degeneracy coding, wherein ambiguity codes are used to eliminate silent substitutions at the individual‐nucleotide level, has clear advantages over scoring amino‐acid characters. Nucleotide, codon, and amino‐acid models are now directly comparable with easy‐to‐use programs, and widely used phylogenetics programs can analyze partitioned supermatrices that incorporate all three types of model. Therefore, it should become standard practice to test among these alternative model types before conducting parametric phylogenetic analyses. An earlier study of 78 protein‐coding genes from 360 green‐plant plastid genomes is used as an empirical example with which to quantify the relative performance of alternative character‐coding methods using five quantification measures. Codon models were selected as having the best fit to the data, yet were outperformed by nucleotide models for all five quantification measures. Third‐codon positions were found to be an important source of phylogenetic signal and even outperformed analyses of first and second positions for some measures. Degeneracy coding generally performed at least as well as amino‐acid coding and is an arguably more effective alternative.  相似文献   

10.
Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.  相似文献   

11.
We look at the higher-order phylogeny of mammals, analyzing in detail the complete mtDNA sequences of more than 40 species. We test the support for several proposed superordinal relationships. To this end, we apply a number of recently programmed methods and approaches, plus better-established methods. New pairwise tests show highly significant evidence that amino acid frequencies are changing among nearly all the genomes studied when unvaried sites are ignored. LogDet amino acid distances, with modifications to take into account invariant sites, are combined with bootstrapping and the Neighbor Joining algorithm to account for these violations of standard models. To weight the more slowly evolving sites, we exclude the more rapidly evolving sites from the data by using "site stripping". This leads to changing optimal trees with nearly all methods. The bootstrap support for many hypotheses varies widely between methods, and few hypotheses can claim unanimous support from these data. Rather, we uncover good evidence that many of the earlier branching patterns in the placental subtree could be incorrect, including the placement of the root. The tRNA genes, for example, favor a split between the group hedgehog, rodents, and primates versus all other sequenced placentals. Such a grouping is not ruled out by the amino acid sequence data. A grouping of all rodents plus rabbit, the old Glires hypothesis, is also feasible with stripped amino acid data, and rodent monophyly is also common. The elephant sequence allows confident rejection of the older taxon Ferungulata (Simpson, 1945). In its place, the new taxa Scrotifera and Fereuungulata are defined. A new likelihood ratio test is used to detect differences between the optimal tree for tRNA versus that for amino acids. While not clearly significant as made, some results indicate the test is tending towards significance with more general models of evolution. Individual placement tests suggest alternative positions for hedgehog and elephant. Congruence arguments to support elephant and armadillo together are striking, suggesting a superordinal group composed of Xenarthra and African endemic mammals, which in turn may be near the root of the placental subtree. Thus, while casting doubt on some recent conclusions, the analyses are also unveiling some interesting new possibilities.  相似文献   

12.
New Methods for Detecting Positive Selection at Single Amino Acid Sites   总被引:15,自引:0,他引:15  
Inferring positive selection at single amino acid sites is of particular importance for studying evolutionary mechanisms of a protein. For this purpose, Suzuki and Gojobori (1999) developed a method (SG method) for comparing the rates of synonymous and nonsynonymous substitutions at each codon site in a protein-coding nucleotide sequence, using ancestral codons at interior nodes of the phylogenetic tree as inferred by the maximum parsimony method. In the SG method, however, selective neutrality of nucleotide substitutions cannot be tested at codon sites, where only termination codons are inferred at any interior node or the number of equally parsimonious inferences of ancestral codons at all interior nodes exceeds 10,000. Here I present a modified SG method which is free from these problems. Specifically, I use the distance-based Bayesian method for inferring the single most likely ancestral codon from 61 sense codons at each interior node. In the computer simulation and real data analysis, the modified SG method showed a higher overall efficiency of detecting positive selection than the original SG method, particularly at highly polymorphic codon sites. These results indicate that the modified SG method is useful for inferring positive selection at codon sites where neutrality cannot be tested by the original SG method. I also discuss that the p-distance is preferable to the number of synonymous substitutions for inferring the phylogenetic tree in the SG method, and present a maximum likelihood method for detecting positive selection at single amino acid sites, which produced reasonable results in the real data analysis.  相似文献   

13.

Background  

Commonly used phylogenetic models assume a homogeneous evolutionary process throughout the tree. It is known that these homogeneous models are often too simplistic, and that with time some properties of the evolutionary process can change (due to selection or drift). In particular, as constraints on sequences evolve, the proportion of variable sites can vary between lineages. This affects the ability of phylogenetic methods to correctly estimate phylogenetic trees, especially for long timescales. To date there is no phylogenetic model that allows for change in the proportion of variable sites, and the degree to which this affects phylogenetic reconstruction is unknown.  相似文献   

14.
The problem of determining an optimal phylogenetic tree from a set of data is an example of the Steiner problem in graphs. There is no efficient algorithm for solving this problem with reasonably large data sets. In the present paper an approach is described that proves in some cases that a given tree is optimal without testing all possible trees. The method first uses a previously described heuristic algorithm to find a tree of relatively small total length. The second part of the method independently analyses subsets of sites to determine a lower bound on the length of any tree. We simultaneously attempt to reduce the total length of the tree and increase the lower bound. When these are equal it is not possible to make a shorter tree with a given data set and given criterion. An example is given where the only two possible minimal trees are found for twelve different mammalian cytochrome c sequences. The criterion of finding the smallest number of minimum base changes was used. However, there is no general method of guaranteeing that a solution will be found in all cases and in particular better methods of improving the estimate of the lower bound need to be developed.  相似文献   

15.
The use of parameter-rich substitution models in molecular phylogenetics has been criticized on the basis that these models can cause a reduction both in accuracy and in the ability to discriminate among competing topologies. We have explored the relationship between nucleotide substitution model complexity and nonparametric bootstrap support under maximum likelihood (ML) for six data sets for which the true relationships are known with a high degree of certainty. We also performed equally weighted maximum parsimony analyses in order to assess the effects of ignoring branch length information during tree selection. We observed that maximum parsimony gave the lowest mean estimate of bootstrap support for the correct set of nodes relative to the ML models for every data set except one. For several data sets, we established that the exact distribution used to model among-site rate variation was critical for a successful phylogenetic analysis. Site-specific rate models were shown to perform very poorly relative to gamma and invariable sites models for several of the data sets most likely because of the gross underestimation of branch lengths. The invariable sites model also performed poorly for several data sets where this model had a poor fit to the data, suggesting that addition of the gamma distribution can be critical. Estimates of bootstrap support for the correct nodes often increased under gamma and invariable sites models relative to equal rates models. Our observations are contrary to the prediction that such models cause reduced confidence in phylogenetic hypotheses. Our results raise several issues regarding the process of model selection, and we briefly discuss model selection uncertainty and the role of sensitivity analyses in molecular phylogenetics.  相似文献   

16.
We evaluated the effects of selection on the molecular evolution of the functional domains of the mammalian cytochrome b gene as it relates to physicochemical properties shown to correlate with rates of amino acid replacement. Two groups of mammals were considered: pocket gophers of the rodent family Geomyidae, and cetaceans and ungulates of the monophyletic taxon Cetartopdactyla. Several characteristics of cytochrome b evolution were common to both mammal groups. The evolution of the matrix domain reflected the region's relative lack of function. Goodness of fit to neutral expectations indicated that external influences have had very little effect on the evolution of the matrix, although in some cases conservative and moderate changes have been favored. Although rates of synonymous nucleotide substitution have been relatively high, the transmembrane domain exhibited poor goodness of fit to neutral expectations. However, the evolution of the transmembrane domain has been constrained by negative selection, allowing a preponderance of conservative and moderate amino acid replacements. We hypothesize that a high rate of substitution is maintained in spite of negative selection because the codons of the transmembrane coding region are predisposed to conservative changes in all amino acid properties. The evolutionary patterns of the intermembrane domain in pocket gophers and cetartiodactyls, however, were very different. Changes inferred from the pocket gopher phylogenetic tree exhibited a significant fit to neutral expectations for each of the amino acid properties. Changes inferred from the cetartiodactyl tree exhibited significant fit to neutral expectations for polarity and isoelectric point, but not for composition, molecular volume, polar requirement, or hydropathy. In each case, lack of fit was due to selection that promoted conservative or moderate change, with the noteworthy exception of polar requirement. We detected an unexpectedly large change in polar requirement (from aspartic acid to threonine) in two separate lineages (Camelus bactrianus and all cetaceans) at amino acid position 159. This inferred change occurred in a region of the cyt-b protein that directly interacts with external surface proteins of the cytochrome bc(1) complex and resulted in a reversion to a more common character state in vertebrates.  相似文献   

17.
Many phylogenetic methods produce large collections of trees as opposed to a single tree, which allows the exploration of support for various evolutionary hypotheses. However, to be useful, the information contained in large collections of trees should be summarized; frequently this is achieved by constructing a consensus tree. Consensus trees display only those signals that are present in a large proportion of the trees. However, by their very nature consensus trees require that any conflicts between the trees are necessarily disregarded. We present a method that extends the notion of consensus trees to allow the visualization of conflicting hypotheses in a consensus network. We demonstrate the utility of this method in highlighting differences amongst maximum likelihood bootstrap values and Bayesian posterior probabilities in the placental mammal phylogeny, and also in comparing the phylogenetic signal contained in amino acid versus nucleotide characters for hexapod monophyly.  相似文献   

18.
It has long been recognized that the rates of molecular evolution vary amongst sites in proteins. The usual model for rate heterogeneity assumes independent rate variation according to a rate distribution. In such models the rate at a site, although random, is assumed fixed throughout the evolutionary tree. Recent work by several groups has suggested that rates at sites often vary across subtrees of the larger tree as well as across sites. This phenomenon is not captured by most phylogenetic models but instead is more similar to the covarion model of Fitch and coworkers. In this article we present methods that can be useful in detecting whether different rates occur in two different subtrees of the larger tree and where these differences occur. Parametric bootstrapping and orthogonal regression methodologies are used to test for rate differences and to make statements about the general differences in the rates at sites. Confidence intervals based on the conditional distributions of rates at sites are then used to detect where the rate differences occur. Such methods will be helpful in studying the phylogenetic, structural, and functional bases of changes in evolutionary rates at sites, a phenomenon that has important consequences for deep phylogenetic inference.  相似文献   

19.
Phylogenetic networks aim to represent the evolutionary history of taxa. Within these, reticulate networks are explicitly able to accommodate evolutionary events like recombination, hybridization, or lateral gene transfer. Although several metrics exist to compare phylogenetic networks, they make several assumptions regarding the nature of the networks that are not likely to be fulfilled by the evolutionary process. In order to characterize the potential disagreement between the algorithms and the biology, we have used the coalescent with recombination to build the type of networks produced by reticulate evolution and classified them as regular, tree sibling, tree child, or galled trees. We show that, as expected, the complexity of these reticulate networks is a function of the population recombination rate. At small recombination rates, most of the networks produced are already more complex than regular or tree sibling networks, whereas with moderate and large recombination rates, no network fit into any of the standard classes. We conclude that new metrics still need to be devised in order to properly compare two phylogenetic networks that have arisen from reticulating evolutionary process.  相似文献   

20.
Simplifying assumptions made in various tree reconstruction methods-- notably rate constancy among nucleotide sites, homogeneity, and stationarity of the substitutional processes--are clearly violated when nucleotide sequences are used to infer distant relationships. Use of tree reconstruction methods based on such oversimplified assumptions can lead to misleading results, as pointed out by previous authors. In this paper, we made use of a (discretized) gamma distribution to account for variable rates of substitution among sites and built models that allowed for unequal base frequencies in different sequences. The models were nonhomogeneous Markov-process models, assuming different patterns of substitution in different parts of the tree. Data of the small-subunit rRNAs from four species were analyzed, where base frequencies were quite different among sequences and rates of substitution were highly variable at sites. Parameters in the models were estimated by maximum likelihood, and models were compared by the likelihood-ratio test. The nonhomogeneous models provided significantly better fit to the data than homogeneous models despite their involvement of many parameters. They also appeared to produce reasonable estimation of the phylogenetic tree; in particular, they seemed able to identify the root of the tree.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号