首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH?=?6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L?×?h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L?×?h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.  相似文献   

2.
Moon C  Lee CH  Sang BI  Um Y 《Bioresource technology》2011,102(22):10561-10568
Medium compositions favoring butanol and 1,3-propanediol (1,3-PDO) production from glycerol by Clostridium pasteurianum DSM525 were investigated using statistical experimental designs. Medium components affecting butanol and 1,3-PDO production were screened using a fractional factorial experimental design. Among the six tested variables (phosphate buffer, MnSO4·H2O, MgSO4·7H2O, FeSO4·7H2O, (NH4)2SO4, and yeast extract), FeSO4·7H2O, (NH4)2SO4, and yeast extract were found to be significant variables for further optimization of medium using a Box-Behnken design. Optimal butanol (0.98 g/L/h) and 1,3-PDO (1.19 g/L/h) productivities were predicted by the corresponding quadratic model for each product and the models were validated experimentally under optimized conditions. The optimal medium composition for butanol production was significantly different from that for 1,3-PDO production (0.06 vs. 0 g/L for FeSO4·7H2O, 7.35 vs. 0 g/L for (NH4)2SO4, and 5.08 vs. 8.0 g/L for yeast extract), suggesting that the product formation from glycerol by C. pasteurianum DSM525 can be controlled by changing medium compositions.  相似文献   

3.
Clostridium pasteurianum can utilize glycerol as the sole carbon source for the production of butanol and 1,3-propanediol. Crude glycerol derived from biodiesel production has been shown to be toxic to the organism even in low concentrations. By examination of different pretreatments we found that storage combined with activated stone carbon addition facilitated the utilization of crude glycerol. A pH-controlled reactor with in situ removal of butanol by gas stripping was used to evaluate the performance. The fermentation pattern on pretreated crude glycerol was quite similar to that on technical grade glycerol. C. pasteurianum was able to utilize 111 g/l crude glycerol. The average consumption rate was 2.49 g/l/h and maximum consumption rate was 4.08 g/l/h. At the maximal glycerol consumption rate butanol was produced at 1.3 g/l/h. These rates are higher than those previously reported for fermentations on technical grade glycerol by the same strain. A process including pretreatment and subsequent fermentation of the crude glycerol could be usable for industrial production of butanol by C. pasteurianum.  相似文献   

4.
5.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

6.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

7.
This work aims to produce α-ketoisocaproate (KIC) from l-leucine via the free-whole-cell biotransformation of Rhodococcus opacus DSM 43250. The effects of temperature, pH, substrate concentration, cell concentration, and rotating speed on KIC production were examined. Furthermore, the biotransformation conditions were optimized with response surface methodology (RSM). The optimal biotransformation conditions were as follows: temperature 43.7 °C, pH 8.4, l-leucine concentration 5.1 g/L, cell concentration 30.4 g/L, and rotating speed 170 rpm. The maximal KIC production predicted by RSM model reached 1275 mg/L at the optimal conditions, and in the validated experiments, the maximal KIC production reached 1264 mg/L, which was very close to the predicted KIC production. The current work provides an alternative for the production of KIC and the results obtained here are useful for the biotransformatic KIC production on a large scale.  相似文献   

8.
Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.  相似文献   

9.
Hu ZC  Zheng YG  Shen YC 《Bioresource technology》2011,102(14):7177-7182
1,3-Dihydroxyacetone can be produced by biotransformation of glycerol with glycerol dehydrogenase from Gluconobacter oxydans cells. Firstly, improvement the activity of glycerol dehydrogenase was carried out by medium optimization. The optimal medium for cell cultivation was composed of 5.6 g/l yeast extract, 4.7 g/l glycerol, 42.1 g/l mannitol, 0.5 g/l K2HPO4, 0.5 g/l KH2PO4, 0.1 g/l MgSO4·7H2O, and 2.0 g/l CaCO3 with the initial pH of 4.9. Secondly, an internal loop airlift bioreactor was applied for DHA production from glycerol by resting cells of G. oxydans ZJB09113. Furthermore, the effects of pH, aeration rate and cell content on DHA production and glycerol feeding strategy were investigated. 156.3 ± 7.8 g/l of maximal DHA concentration with 89.8 ± 2.4% of conversion rate of glycerol to DHA was achieved after 72 h of biotransformation using 10 g/l resting cells at 30 °C, pH 5.0 and 1.5 vvm of aeration rate.  相似文献   

10.
Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma   总被引:7,自引:0,他引:7  
We isolated mutants of Phaffia rhodozyma strain NRRL Y-17269 that overproduced astaxanthin when grown on corn-based fuel ethanol stillage (thin stillage, TS, or fuel ethanol byproducts). Ten ml cultures of mutant strain JB2 produced 1.54 ± 0.21 mg carotenoid/mg dry weight when grown on 70% thin stillage at pH 5.2, compared with 0.38 ± 0.04 g/mg produced by the parental strain. Furthermore, JB2 produced similar astaxanthin concentrations when grown in either thin stillage or yeast malt broth. By comparison, previously described astaxanthin overproducing strain NRRL Y-17811 yielded 1.08 ± 0.07 g/mg in yeast malt broth but only 0.67 ± 0.03 g/mg in thin stillage. Five liter fermentation experiments using JB2 grown on 70% thin stillage at pH 5.2 yielded 2.01 ± 0.17 g/mg astaxanthin. Thus, JB2 is uniquely suited for astaxanthin production from low cost thin stillage.  相似文献   

11.
Crude glycerol is a major byproduct of the biodiesel industry; previous research has proved the feasibility of producing docosahexaenoic acid (DHA, 22:6 n − 3) through fermentation of the algae Schizochytrium limacinum on crude glycerol. The objective of this work is to investigate the cell growth kinetics, substrate utilization efficiency, and DHA production of the algae through a continuous culture. Steady-state biomass yield, biomass productivity, growth yield on glycerol, specific glycerol consumption rate, and fatty acid composition were investigated within the range of dilution rate (D) from 0.2 to 0.6 day−1, and the range of feed crude glycerol concentration (S0) from 15 to 120 g/L. The maximum specific growth rate was determined as 0.692 day−1. The cells had a true growth yield of 0.283 g/g but with a relatively high maintenance coefficient (0.2216 day−1). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day−1 and S0 = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day−1 and S0 = 90 g/L due to the higher DHA content at S0 = 90 g/L. The biomass and DHA productivity of the continuous culture was comparable to those of batch culture, while lower than the fed-batch culture, mainly because of the lower DHA content obtained by the continuous culture. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on biodiesel-derived crude glycerol.  相似文献   

12.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

13.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

14.
Declining fossil fuel reserves, coupled with environmental concerns over their continued extraction and exploitation have led to strenuous efforts to identify renewable routes to energy and fuels. One attractive option is to convert glycerol, a by-product of the biodiesel industry, into n-butanol, an industrially important chemical and potential liquid transportation fuel, using Clostridium pasteurianum. Under certain growth conditions this Clostridium species has been shown to predominantly produce n-butanol, together with ethanol and 1,3-propanediol, when grown on glycerol. Further increases in the yields of n-butanol produced by C. pasteurianum could be accomplished through rational metabolic engineering of the strain. Accordingly, in the current report we have developed and exemplified a robust tool kit for the metabolic engineering of C. pasteurianum and used the system to make the first reported in-frame deletion mutants of pivotal genes involved in solvent production, namely hydA (hydrogenase), rex (Redox response regulator) and dhaBCE (glycerol dehydratase). We were, for the first time in C. pasteurianum, able to eliminate 1,3-propanediol synthesis and demonstrate its production was essential for growth on glycerol as a carbon source. Inactivation of both rex and hydA resulted in increased n-butanol titres, representing the first steps towards improving the utilisation of C. pasteurianum as a chassis for the industrial production of this important chemical.  相似文献   

15.
Parameters Affecting Solvent Production by Clostridium pasteurianum   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.  相似文献   

16.
A new solventogenic bacterium, strain GT6, was isolated from standing water sediment. 16S-rRNA gene analysis revealed that GT6 belongs to the heterogeneous Clostridium tetanomorphum group of bacteria exhibiting 99% sequence identity with C. tetanomorphum 4474T. GT6 can utilize a wide range of carbohydrate substrates including glucose, fructose, maltose, xylose and glycerol to produce mainly n-butanol without any acetone. Additional products of GT6 metabolism were ethanol, butyric acid, acetic acid, and trace amounts of 1,3-propanediol. Medium and substrate composition, and culture conditions such as pH and temperature influenced product formation. The major fermentation product from glycerol was n-butanol with a final concentration of up to 11.5 g/L. 3% (v/v) glycerol lead to a total solvent concentration of 14 g/L within 72 h. Growth was not inhibited by glycerol concentrations as high as 15% (v/v).  相似文献   

17.
This study was designed to investigate the ability of Clostridium saccharoperbutylacetonicum N1-4 to produce butanol in a limited nutrient medium using mixtures of glucose and butyric acid as substrates. Specific combinations of glucose and butyric acid were found to influence the enhancement and retardation of butanol production as well as the reduction and modulation of the number of bacterial cells. Increasing the butyric acid concentration leads to the inhibition of bacterial growth, whereas the presence of (0?C5?g/L) butyric acid and (0?C10?g/L) glucose enhances the butanol production. The combination of 5?g/L butyric acid with 5 and 10?g/L of glucose was found to be the most suitable, but the use of glucose at concentrations greater than 10?g/L shifted the optimal butyric acid concentrations to 10 and 15?g/L for maximum butanol production signifying the requirement of a specific combination of glucose and butyric acid for enhanced butanol production in the fermentation process. C. saccharoperbutylacetonicum N1-4 demonstrated the ability to produce butanol in the absence of glucose, but no acetone or ethanol was produced under these conditions, reflecting the nature of the pathways involved in the production of butanol using only butyric acid. Ten grams per litre of butyric acid was found able to produce 13?g/L of butanol in the presence of 20?g/L of glucose, and 0.7?g/L butanol was produced in the absence of glucose. This study indicates the importance of the glucose to butyric acid ratio to the enhancement of butanol production.  相似文献   

18.
Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d50 for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d50 ∼ 7 μm)in thin stillage and decreased coarse (d50 ∼ 122 μm) by half compared to hammermilling.  相似文献   

19.
Clostridium pasteurianum produces industrially valuable chemicals such as n‐butanol and 1,3‐propanediol from fermentations of glycerol and glucose. Metabolic engineering for increased yields of selective compounds is not well established in this microorganism. In order to study carbon fluxes and to selectively increase butanol yields, we integrated the latest advances in genome editing to obtain an electrocompetent Clostridium pasteurianum strain for further engineering. Deletion of the glycerol dehydratase large subunit (dhaB) using an adapted S. pyogenes Type II CRISPR/Cas9 nickase system resulted in a 1,3‐propanediol‐deficient mutant producing butanol as the main product. Surprisingly, the mutant was able to grow on glycerol as the sole carbon source. In spite of reduced growth, butanol yields were highly increased. Metabolic flux analysis revealed an important role of the newly identified electron bifurcation pathway for crotonyl‐CoA to butyryl‐CoA conversion in the regulation of redox balance. Compared to the parental strain, the electron bifurcation pathway flux of the dhaB mutant increased from 8 to 46% of the overall flux from crotonyl‐CoA to butyryl‐CoA and butanol, indicating a new, 1,3‐propanediol‐independent pattern of glycerol fermentation in Clostridium pasteurianum.  相似文献   

20.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号