首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a liquid–solid circulating fluidized bed bioreactor (LSCFB) with anoxic and aerobic beds and lava rock as a biofilm carrier media was used to investigate the impact of the COD/N ratio on the process performance, with particular focus on total nitrogen removal. Three different COD/N ratios of 10:1, 6:1 and 4:1 were tested at an empty bed contact time of 0.82 h. More than 90% of the influent organic matter was removed throughout the study with 58% removal in the anoxic column in Phase III. Total nitrogen removal efficiencies in Phases I–III were 91%, 82% and 71% and simultaneous nitrification–denitrification (SND) occurred in the aerobic downer. The LSCFB demonstrated tertiary effluent quality at COD/N ratio of 10:1 and 6:1 with soluble biochemical oxygen demand (SBOD) <10 mg l?1 and total nitrogen (TN) <10 mg l?1.  相似文献   

2.
Several biofilters and biotrickling filters were used for the treatment of a mixture of formaldehyde and methanol; and their efficiencies were compared. Results obtained with three different inert filter bed materials (lava rock, perlite, activated carbon) suggested that the packing material had only little influence on the performance. The best results were obtained in a biotrickling filter packed with lava rock and fed a nutrient solution that was renewed weekly. A maximum formaldehyde elimination capacity of 180 g m–3 h–1 was reached, while the methanol elimination capacity rose occasionally to more than 600 g m–3 h–1. Formaldehyde degradation was affected by the inlet methanol concentration. Several combinations of load vs empty bed residence time (EBRTs of 71.9, 46.5, 30.0, 20.7 s) were studied, reaching a formaldehyde elimination capacity of 112 g m–3 h–1 with about 80% removal efficiency at the lowest EBRT (20.7 s).  相似文献   

3.
Ethyl acetate removal from an air stream was carried out by using a flat composite membrane bioreactor. The composite membrane consisted of a dense polydimethylsiloxane top layer with an average thickness of 0.3 μm supported in a porous polyacrylonitrile layer (50 μm). The membrane bioreactor (MBR) was operated during 3 months, and a maximum elimination capacity of 225 g m−3 h−1 at an empty bed residence time of 60 s was observed. Removal efficiencies higher than 95% were obtained for inlet loads lower than 200 g m−3 h−1 and empty bed residence times as short as 15 s. The estimated yield coefficient, determined from the carbon dioxide production, resulted in 0.82 g dry biomass synthesized per gram of ethyl acetate degraded. No data of ethyl acetate treatment in MBR have been found in the literature, but the results illustrate that membrane bioreactors can potentially be a good option for its treatment.  相似文献   

4.
Hybrid constructed wetland systems have recently been used to treat wastewaters where high demand for removal of ammonia is required. However, these systems have not been used too often for small on-site treatment systems. This is because in many countries ammonia is not limited in the discharge from small systems. Hybrid systems have a great potential to reduce both ammonia and nitrate concentrations at the same time. In our study we employed a three-stage constructed wetland system consisting of saturated vertical-flow (VF) bed (2.5 m2, planted with Phragmites australis), free-drained VF bed (1.5 m2, planted with P. australis) and horizontal-flow (HF) bed (6 m2, planted with Phalaris arundinacea) in series. All wetlands were originally filled with crushed rock (4-8 mm). However, nitrification was achieved only after the crushed rock was replaced with sand (0-4 mm) in the free-drain wetland. Also, original size of crushed rock proved to be too vulnerable to clogging and therefore, in the first wetlands the upper 40 cm was replaced by coarser fraction of crushed rock (16-32 mm) before the second year of operation started. The system was fed with mechanically pretreated municipal wastewater and the total daily flow was divided into two batches 12 h apart. The evaluation of the results from the period 2007 to 2008 indicated that such a system has a great potential for oxidation of ammonia and reduction of nitrate. The ammonia was substantially reduced in the free-drained VF bed and nitrate was effectively reduced in the final HF bed. The inflow mean NH4-N concentration of 29.9 mg/l was reduced to 6.5 mg/l with the average removal efficiency of 78.3%. At the same time the average nitrate-N concentration rose from 0.5 to only 2.7 mg/l at the outflow. Removal of BOD5 and COD amounted to 94.5% and 84.4%, respectively, with respective average outflow concentrations of 10 and 50 mg/l. Phosphorus was removed efficiently despite the fact that the system was not aimed at P removal and therefore no special media were used. Phosphorus removal amounted in 2008 to 65.4%, but the average outflow concentration of 1.8 mg/l is still high. The results of the present study indicate very efficient performance of the hybrid constructed wetlands, but optimal loading parameters still need to be adjusted. The capital cost of the experimental system is comparable to the conventional on-site treatment plant but the operations and maintenance costs are about one third of the conventional plant.  相似文献   

5.
Sulfidogenic fluidized bed treatment of real acid mine drainage water   总被引:1,自引:0,他引:1  
The treatment of real acid mine drainage water (pH 2.7-4.3) containing sulfate (1.5-3.34 g/L) and various metals was studied in an ethanol-fed sulfate-reducing fluidized bed reactor at 35 °C. The robustness of the process was tested by increasing stepwise sulfate, ethanol and metal loading rates and decreasing feed pH and hydraulic retention time. Highest sulfate reduction rate (4.6 g/L day) was obtained with feed sulfate concentration of 2.5 g/L, COD/sulfate ratio of 0.85 and HRT of 12 h. The corresponding sulfate and COD removal efficiencies were about 90% and 80%, respectively. The alkalinity produced in sulfidogenic ethanol oxidation neutralized the acidic mine water. Highest metal precipitation efficiencies were observed at HRT of 24 h, the percent metal removal being over 99.9% for Al (initial concentration 55 mg/L), Co (9.0 mg/L), Cu (49 mg/L), Fe (435 mg/L), Ni (3.8 mg/L), Pb (7.5 mg/L) and Zn (6.6 mg/L), and 94% for Mn (7.21 mg/L).  相似文献   

6.
The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20 mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes.  相似文献   

7.
The present work aims to use a two-stage biotrickling filters for simultaneous treatment of hydrogen sulphide (H2S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). The first biofilter was inoculated with Acidithiobacillus thiooxidans (BAT) and the second one with Thiobacillus thioparus (BTT). For separate feeds of reduced sulphur compounds (RSC), the elimination capacity (EC) order was DMDS > DMS > MM. The EC values were 9.8 gMM-S/m3/h (BTT; 78% removal efficiency (RE); empty bed residence time (EBRT) 58 s), 36 gDMDS-S/m3/h (BTT; 94.4% RE; EBRT 76 s) and 57.5 gH2S-S/m3/h (BAT; 92% RE; EBRT 59 s). For the simultaneous removal of RSC in BTT, an increase in the H2S concentration from 23 to 293 ppmv (EBRT of 59 s) inhibited the RE of DMS (97-84% RE), DMDS (86-76% RE) and MM (83-67% RE). In the two-stage biofiltration, the RE did not decrease on increasing the H2S concentration from 75 to 432 ppmv.  相似文献   

8.
Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants.  相似文献   

9.
The treatment of odorous pollutants by microorganisms on packed waste straw and cortex was investigated at the wastewater treatment plant of the Shanghai petrochemical factory. The removal efficiency of H2S, NH3 and VOCs (volatile organic compounds) reached 98%, 91% and 90%, respectively after operation for one month at an empty bed retention time (EBRT) of 120 s. The heterotrophic bacteria were found to be the dominant microorganism in the biofilter, while fungi and actinomycetes were also present. The bacteria were mostly identified as the members of the genus Bacillus (62.5% of cultured bacteria). The single strand conformation polymorphism (SSCP) results revealed that the genus Bacillus and Pseudomonas were the predominant bacteria. The microbial diversity gradually increased as the treatment progressed, which indicated that the microbial community in the biofilter became more stable upon pollutant removal. The scanning electron microscopy (SEM) was performed to evaluate the microorganism growth on the media. It was found that the waste straw and cortex were suitable for microorganism attachment and growth, and may have potential application in odor treatment.  相似文献   

10.
Ryu HW  Cho KS  Lee TH 《Bioresource technology》2011,102(7):4654-4660
The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125 days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H2O m−1), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m−3. Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU−1 and below 50 mm H2O m−1, respectively.  相似文献   

11.
We investigated whether diapause pupae of Byasa alcinous exhibit pupal color diphenism (or polyphenism) similar to the diapause pupal color polyphenism shown by Papilio xuthus. All diapause pupae of B. alcinous observed in the field during winter showed pupal coloration of a dark-brown type. When larvae were reared and allowed to reach pupation under short-day conditions at 18 °C under a 60 ± 5% relative humidity, diapause pupae exhibited pupal color types of brown (33%), light-brown (25%), yellowish-brown (21%), diapause light-yellow (14%) and diapause yellow (7%). When mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C and 25 °C under a 60 ± 5% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 91.2, 8.8 and 0.0% at 10 °C, and 12.2, 48.8 and 39.0% at 25 °C, respectively. On the other hand, when mature larvae reared at 18 °C were transferred and allowed to reach pupation at 10 °C, 18 °C and 25 °C under an over 90% relative humidity after a gut purge, the developmental ratio of brown and light-brown, yellowish-brown, and diapause light-yellow and diapause yellow types was 79.8, 16.9 and 3.3% at 10 °C, 14.5, 26.9 and 58.6% at 18 °C, and 8.3, 21.2 and 70.5% at 25 °C, respectively. These results indicate that diapause pupae of brown types are induced by lower temperature and humidity conditions, whereas yellow types are induced by higher temperature and humidity conditions. The findings of this study show that diapause pupae of B. alcinous exhibit pupal color diphenism comprising brown and diapause yellow types, and suggest that temperature and humidity experienced after a gut purge are the main factors that affect the diapause pupal coloration of B. alcinous as environmental cues.  相似文献   

12.
Wan S  Li G  Zu L  An T 《Bioresource technology》2011,102(12):6757-6760
A biotrickling filter packed with ceramic particles and seeded with B350 microorganisms was applied to remove trimethylamine (TMA) from gaseous waste. A 100% removal efficiency (RE) was obtained when the empty bed residence time (EBRT) was larger than 110 s at an inlet concentration of 0.30 mg/L. Maximum elimination capacity (EC) was 13.13 g m−3 h−1 (RE = 64.7%) at 55 s of EBRT. TMA concentrations <0.20 mg/L at 83 s of EBRT did not affect the REs (100%). Maximum EC was 13.95 g m−3 h−1 (RE = 78.1%) at a TMA concentration of 0.42 mg/L. Approximately 53.1% of the carbon in TMA was completely mineralized. Bacterial community analysis in the bioreactor revealed more than 21 species in a stable state. Based on all these results, biotrickling filter inoculated with B350 microorganisms is deemed highly capable of ridding waste gas of TMA.  相似文献   

13.
The objective of this study was to assess the feasibility of using a biofilter system to treat hydrogen sulfide (H2S) contaminated air and to characterize its microbial community. The biofilter system was packed with peat. During the experimental work, the peat was divided in three layers (down, middle, and up). Satisfactory removal efficiencies of H2S were proved and reached 99% for the majority of the run time at an empty bed retention time (EBRT) of 60 s. The polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method was used to uncover the changes in the microbial community between the different layers. Analysis of SSCP profiles demonstrated significant differences in community structure from a layer to another with a strong decrease in species diversity towards the up layer. It was found that the used support was suitable for microorganism growth, and may have a potential application in H2S biofiltration system.  相似文献   

14.
The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-N m−3_media d−1 is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h−1 and 10 to 20 m h−1 has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m−3_media d−1. Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.  相似文献   

15.
A styrene-utilizing mixed microbial culture was isolated and utilized in a biofilter for the biological treatment of a contaminated air stream. Biofilter media consisted of composted wood bark and yard waste. The biofilters were acclimated at 120 s residence time and further evaluated at 60 and 30 s gas residence times. The biofilters received organic loading rates of up to 350 g/m3 h. The styrene volumetric removal rate was a function of the organic loading rate and increased with increasing loading rates. Average volumetric removal rates of 69–118 g/m3 h observed in our studies were higher than reported values for styrene biofilters. Average styrene removal efficiencies ranged from 65% to 75% (maximum 100%). Axial analysis of styrene concentration along the column indicated that the bulk of the styrene removal occurred in the first section of the biofilter. Analyses of the media indicated that the moisture content of the first section (50–55% w/w) was significantly lower than in the second and third sections (65–70% w/w). The pressure drops across the biofilter were low due to the high concentration of large media particles. The total pressure drops were 1–3, 4–6, and 10–16 mm for the 120-, 60-, and 30-s residence time periods, respectively. Journal of Industrial Microbiology & Biotechnology (2001) 26, 196–202. Received 04 March 2000/ Accepted in revised form 25 January 2001  相似文献   

16.
The composite filler micro-embedded with Pseudomonas putida (P. putida) was prepared and the biodegradation performance of the filler was evaluated in a biofilter. Five phases were set up to evaluate the performance of the biofilter under different toluene inlet loadings and transient shock loadings. In particular, the microbial community structure in the biofilms and fillers was measured by sequence analysis of the 16S rRNA gene. The results show that the biofilter packed with the composite fillers was suitable for the biodegradation of toluene. The biofilter could start up quickly with high removal efficiency (RE), and remain above 90 % RE when the empty bed residence time (EBRT) was 18 s and the inlet loading rates were not higher than 41.4 g/(m3·h). Moreover, the biofilter could tolerate substantial transient shock loadings. The high removal efficiency and elimination capacity contributed to rich bacterial communities for the efficient degradation of toluene. The dominant microbial communities at the phylum level were mainly Firmicutes, Actinobacteria and Proteobacteria. It is noteworthy that the abundance of Bacteroidetes at phylum level and Chungangia and Stenotrophomonas at genus level increased significantly during the re-start period.  相似文献   

17.
A pilot scale biological treatment system for air emissions was installed and tested at a forest products plant in western Oregon, USA, which collected and treated gaseous emissions from the hardboard steam press vents on the top of the plant building. This system was installed mainly to demonstrate the effectiveness of biological treatment technologies in removing volatile organic compounds (VOC) and hazardous air pollutants (HAP) from the wet-process hardboard press emissions, and to test the efficiency of the system on fine particles and condensable organics with the presence of a pre-treatment wet dust collector. The bio-oxidation system was comprised of a particle pre-treatment unit Type W Rotoclone (wet hydrocyclone), a biotrickling filter and a biofilter with airflow capacity of up to 4.72 m3/s. This unit operated at approximately 0.71 m3/s, which is the optimal flow required for the Rotoclone's throughput, and provided an EBCT (empty bed contact time) of 45 s. Analysis of total VOC measurements from the system indicated removals down to less than 5 ppm in the effluent emissions. Evaluations of opacity reductions also met project objectives with routine outlet measurements of 0–5%, which are in compliance with state regulatory guidelines. Emissions air samples were collected at different locations in the biological system for GC–MS analysis and characterization to identify specific VOCs and their removals.  相似文献   

18.
Waste gas containing diethyldisulphide (DEDS) is generated from various industries including pulp and paper, refinery, rayon and molasses based distilleries, etc. DEDS has odour threshold detection with an average concentration of 10(-9)mg/m(3) at 25 degrees C. DEDS is toxic to bacteria, fungus and also to mammals when exposed for a long period. Waste gas containing DEDS require proper treatment prior to discharge into the environment. DEDS containing waste gas was treated in a biofilter, packed with compost along with wooden chips and enriched with DEDS degrading microorganisms. The biofilter could remove DEDS to the extent of 94+/-5% at a loading of 1.60 g/m(3)/h with an empty bed retention time of 150s. At optimal operating conditions, the average moisture content required by the biofilter was in the range of 60-65%. The biodegradative products of DEDS were thiosulphate and sulphate.  相似文献   

19.
Experiments were conducted in a laboratory-scale biofilter to assess the ability of a fixed-film biological process to treat an air stream containing β-caryophyllene, a sesquiterpene emitted by a variety of conifer trees as well as industrial wood processing operations. Treatment performance was evaluated under a variety of pollutant loading conditions and nutrient supply rates over an operational period lasting more than 240 days. At empty bed contact times (EBCTs) as low as 10 s and daily average pollutant loading rate as high as 24.2 g C/(m3 h) (grams pollutant measured as carbon per cubic meter packed bed volume per hour), removal efficiencies in excess of 95 % were observed when sufficient nutrients were supplied. Results demonstrate that, as with biofilters treating other compounds, biofilters treating β-caryophyllene can experience local nutrient limitations that result in diminished performance. The biofilter successfully recovered high removal efficiency within a few days after resumption of pollutant loading following a 14-day interval of no contaminant loading. Construction of a 16S rRNA gene library via pyrosequencing revealed the presence of a high proportion of bacteria clustering within the genera Gordonia (39.7 % of the library) and Rhodanobacter (37.6 %). Other phylotypes detected at lower relative abundances included Pandoraea (6.2 %), unclassified Acetobacteraceae (5.5 %), Dyella (3.3 %), unclassified Xanthomonadaceae (2.6 %), Mycobacterium (1.8 %), and Nocardia (0.6 %). Collectively, results demonstrate that β-caryophyllene can be effectively removed from contaminated gas streams using biofilters.  相似文献   

20.
The study was conducted on two consecutive years to determine whether ovulatory activity can be induced in anovulatory goats by exposing them to sexually active bucks for 4, 8, 12 or 16 h per day during 15 consecutive days. In experiment 1, females remained continuously in the experimental pens where they were in contact with males. One group remained isolated from males (controls) and four other groups were exposed to sexually active males for 4, 8, 12 or 16 h per day. In experiment 2, females were taken away to “resting” pens free of male odours between the periods of contact with bucks. They were allocated to 5 groups as in experiment 1. Ovulations were determined by progesterone plasma levels and transrectal ultrasonography. Pregnancy was determined by abdominal ultrasonography. In both experiments, more than 90% of females exposed to the bucks had at least one ovulation during the whole experiment whereas only 11 or 0% (experiments 1 and 2, respectively) did so in the control group (P < 0.001). Furthermore, the proportion of females ovulating did not differ among groups depending on duration of contact with bucks (P > 0.05). In both experiments, pregnancy rates were not affected by the daily duration of contact with males (P > 0.05). To conclude, 4 h of daily contact with sexually active males is sufficient to stimulate ovulatory activity in anovulatory goats and this effect is not due to the presence of olfactory cues from the males remaining in the pens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号