首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effects and removal efficiency of dieldrin (DLD) in anaerobic reactors were investigated. Anaerobic toxicity assay (ATA) experiments conducted in batch reactors revealed that 30 mg/l DLD had inhibitory effects on the unacclimated mixed anaerobic cultures. Continuous reactor experiments performed in a lab-scale two-stage upflow anaerobic sludge blanket (UASB) reactor system which was fed with ethanol as the sole carbon source, indicated that anaerobic granular cultures could be successfully acclimated to DLD. Chemical oxygen demand (COD) removal efficiencies were 88-92% for the two-stage system. The influent DLD concentration of 10 mg/l was removed by 44-86% and 86-94% in the second stage and overall UASB system, respectively. Biosorption of DLD on granular anaerobic biomass was found to be a significant mechanism for DLD removal in the UASB system. The maximum DLD loading rate and minimum HRT achievable for the first stage UASB reactor were 0.5 mg/lday (76 microg DLD/g VSS.day) and 10 h, respectively, which resulted in the overall COD removal efficiency of 85%.  相似文献   

2.
A hybrid anaerobic solid-liquid bioreactor for food waste digestion   总被引:5,自引:0,他引:5  
A hybrid anaerobic solid-liquid (HASL) bioreactor is an enhanced two-phase anaerobic system, that consists of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic reactor. Food waste digestion in HASL bioreactors with pre-acidification and HASL operation stages was investigated in two separate runs. After 8 days of pre-acidification in Run A and 4 days in Run B, total volatile fatty acid (TVFA) and chemical oxygen demand (COD) concentrations in the leachates of both acidification reactors were similar. During HASL operation stage, TVFA and COD removal in the methanogenic phase were 77–100% and 75–95%, respectively. Some 99% of the total methane generated was from the methanogenic phase with a content of 68–70% methane. At the end of operation, about 59–60% of the added volatile solids (VS) were removed with a methane yield of 0.25 l g–1 VS.  相似文献   

3.
Batch and continuous biogas production from grass silage liquor   总被引:2,自引:0,他引:2  
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m−3 day−1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg−1 COD.  相似文献   

4.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

5.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

6.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

7.
Production of electricity from samples obtained during anaerobic digestion of grass silage was examined using single-chamber air-cathode mediator-less microbial fuel cells (MFCs). The samples were obtained from anaerobic reactors at start-up conditions after 3 and 10 days of operation under psychrophilic (15 °C) and mesophilic (37 °C) temperatures. Electricity was directly produced from all samples at a concentration of 1500 mg COD L−1. Power density obtained from the samples, as a sole carbon source, ranged from 56 ± 3 W m−3 to 31 ± 1 W m−3 for the mesophilic and psychrophilic samples, respectively. Coulombic efficiencies ranged from 18 ± 1% to 12 ± 1% for the same samples. The relationship between the maximum voltage output and initial COD concentration appeared to follow saturation kinetics at the external resistance of 217 Ω. Chemical oxygen demand (COD) removal was over 90% and total phenolics removal was in the range of 30-75% for all samples tested, with a standard amount of 60 mg L−1 total phenolics removed for every sample. Our results indicate that generating electricity from solution samples of anaerobic reactors utilizing grass silage is possible, opening the possibility for combination of anaerobic digestion with MFC technology for energy generation.  相似文献   

8.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

9.
Ye J  Mu Y  Cheng X  Sun D 《Bioresource technology》2011,102(9):5498-5503
Treatment of a fresh leachate with high-strength organics and calcium from municipal solid waste (MSW) incineration plant by an up-flow anaerobic sludge blanket (UASB) reactor was investigated under mesophilic conditions, emphasizing the influence of organic loading rate (OLR). When the reactor was fed with the raw leachate (COD as high as 70,390-75,480 mg/L) at an OLR of 12.5 kg COD/(m3 d), up to ∼82.4% of COD was removed suggesting the feasibility of UASB process for treating fresh leachates from incineration plants. The ratio of volatile solids/total solids (VS/TS) of the anaerobic sludge in the UASB decreased significantly after a long-term operation due to the precipitation of calcium carbonate in the granules. Scanning electron microscopy (SEM) observation shows that Methanosaeta-like species were in abundance, accompanied by a variety of other species. The result was further confirmed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing.  相似文献   

10.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended.  相似文献   

11.
Acetamide degradation was investigated in a bench-scale upflow anaerobic sludge-blanket (UASB) reactor, successively fed with acetamide, acetate and acetamide, over a period of 343 days, at different hydraulic retention times (t HR). The reactor was seeded with the sludge previously described [Guyot et al. (1994) Appl Microbiol Biotechnol, 42:452-456], in which methanogenesis from acetamide was performed through a synergistic relationship between an acetamide-degrading, aerobic rod and methanogens. When the reactor was fed acetamide, the chemical oxygen demand (COD) removal efficiency was 86% at volumetric loads less than 1.18 kg COD m–3 day –1. At higher volumetric loads, the efficiency decreased markedly, e.g. 50.9% at a volumetric organic load of 3.39 kg COD m–3 day–1 (1 day t HR) with an accumulation of both acetamide and acetate. The same reactor, when fed with acetate at t HR 1 day, reached a high COD removal (99%). Evidence of the inhibition of acetate degradation by acetamide is presented. After a long period (135 days) without feeding the reactor with acetamide, the sludge reactor was still capable of degrading acetamide when this substrate was supplied again. It seems that the synergistic degradation of acetamide by aerobes and methanogens present in the UASB reactor sludge is stable over a long period (343 days), in spite of limiting concentrations of dissolved oxygen in the feed.  相似文献   

12.
Anaerobic digestion of grass silage in batch leach bed reactors, with and without a second stage upflow anaerobic sludge blanket (UASB) reactor, was evaluated. Sixty six percent of the methane potential in grass was obtained within the 55 days solids retention time in the leach bed-UASB process without pH adjustment, whereas in the one-stage leach bed process 20% of the methane potential in grass was extracted. In two-stage operation, adjustment of the pH of influent to the leach bed reactor to 6 with HCl led to inhibition of both hydrolysis/acidogenesis and methanogenesis. In the leach bed-UASB process 39% of the carbohydrates and 58% of the acid soluble lignin were solubilised within the 49 days of operation, whereas Klason lignin was most recalcitrant. The methane potential of the digestates varied from 0.141 to 0.204 m3 CH4 kg(-1) added volatile solids.  相似文献   

13.
In the present study, an attempt has been made to treat dairy wastewater entirely via anaerobic treatment over a period of 215 days, using two-stage Hybrid Upflow Anaerobic Sludge Blanket (HUASB) reactors, which offer the advantages associated both with fixed film and upflow sludge blanket treatments. A HUASB with polyurethane foam cubes was used for stage I, and a HUASB utilizing PVC-cut rings was used for stage II. The output from stage I was used as the input for stage II. The two-stage reactor was operated at an organic loading rate that varied from 10.7 to 21.4 kg COD m3/d for a period of 215 days, including the start-up period. The ideal organic loading rate for the two-stage reactor was 19.2 kg COD/m3/d. A further 21.4 kg COD m3/d increase in the organic loading rate resulted in the souring of the reactor function in stage I, which consequently reduced the overall reactor performance. Combined COD removal during the stable operation period (10.7 to 19.2 kg COD m3/d) occurred in a range between 97 and 99%. The methane content in the biogas varied from 65 to 70% in stage I, and from 63 to 66% in stage II. The two-stage anaerobic treatment using HUASB with PUF and PVC described in this work is expected to constitute a better alternative for the complete treatment of dairy wastewater than high-rate anaerobic, anaerobic/aerobic, and two-phase anaerobic treatment methods.  相似文献   

14.
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process.  相似文献   

15.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity.  相似文献   

16.
Post-treatments are necessary if anaerobic effluents need to be discharged into surface waters, because anaerobic digestion alone is not able to produce effluents that can meet the discharge standards applied in most industrialized countries, particularly for suspended solids, particulate COD, nitrogen, phosphorus and sulphides. This paper has the aim to present some results obtained in the recent years in our laboratory, where different comprehensive processes that include anaerobic digestion have been studied. Discussion will regard: 1) the ANANOX (ANaerobic-ANoxic-OXic) process for the treatment of municipal wastewater; 2) a process studied for the biological removal of C, N and P from piggery wastewater that has a hybrid anaerobic/anoxic reactor as the first treatment step; 3) the use of a Sequencing Batch Reactor for the post-treatment of digested cheese whey mixed with cheese factory cleaning waters.Abbreviations ABR Anaerobic Baffled Reactor - Bv organic volumetric loading rate (gCOD·L-1·d-1) - BV bed volumes - F/M food to microorganism ratio or sludge loading rate (gCOD·g.VSS-1·d-1) - HRT hydraulic retention time (t) - JHB University of Johannesburg nutrient removal process - p.e. person equivalent - Qrd recycle for denitrification flow rate - Qrs sludge recycle flow rate - SBR Sequencing Batch Reactor - TKN Total Kjeldahl Nitrogen - VCF Volumetric Concentration Factor (vol. permeate/vol. retentate)  相似文献   

17.
A thermophilic upflow anaerobic sludge blanket (UASB) reactor was combined with a mesophilic aerobic fluidized bed (AFB) reactor for treatment of a medium strength wastewater with 2,700?mg COD?l?1. The COD removal efficiency reached 75% with a removal rate of 0.2 g COD?l?1 h?1 at an overall hydraulic retention time 14 hours. The distribution of microbial activity and its change with hydraulic retention time in the two reactors were investigated by measuring ATP concentration in the reactors and specific ATP content of the biomass. In the UASB reactor, the difference in specific ATP was significant between the sludge bed and blanket solution (0.02?mg ATP g VS?1 versus 0.85?mg ATP g VS?1) even though the ATP concentrations in these two zones were similar. A great pH gradient up to 4 was developed along the UASB reactor. Since a high ATP or biological activity in the blanket solution could only be maintained in a narrow pH range from 6.5 to 7.5, the sludge granules showed a high pH tolerance and buffering capacity up to pH 11. The suspended biomass in AFB reactor had a higher specific ATP than the biomass fixed in polyurethane carriers (1.6?mg ATP g VS?1 versus 1.1?mg ATP g VS?1), which implies a starvation status of the immobilized cells due to mass transfer limitation. The aerobes had to work under starvation conditions in this polishing reactor. The anaerobic biomass brought into AFB reactor contributed to an increase in suspended solids, but not the COD removal because of its fast deactivation under aerobic conditions. A second order kinetic model was proposed for ATP decline of the anaerobes. The results on distribution of microbial activity in the two reactors as well as its change with hydraulic retention time lead to further performance improvement of the combined anaerobic/aerobic reactor system.  相似文献   

18.
The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with NH4 + and NO2 as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescencein situ hybridization (FISH) technique. By the last month of operation, the consumed NO2 N/NH4 +-N ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influentshutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.  相似文献   

19.
Dairy wastewaters containing elevated fat and grease levels (868 mg l–1) were treated in an upflow anaerobic sludge blanket reactor (UASB) and resulted in effluents of high turbidity (757 nephelometric turbidity units), volatile suspended solids up to 944 mg l–1 and COD removal below 50%. When the same dairy wastewater was pre-treated with 0.1% (w/v) of fermented babassu cake containing Penicillium restrictum lipases, turbidity and volatile suspended solids were decreased by 75% and 90%, respectively, and COD removal was as high as 90%.  相似文献   

20.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号