首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the way in which feeding rats with two fat sources (olive or sunflower oils) affected electron-transport components and function of mitotic (liver) and postmitotic (heart and skeletal muscle) tissues during ageing. Rats adapted the mitochondrial-membrane-lipid profile to dietary fat throughout the study, suggesting that the benefits to eat either of the two fats might be maintained lifelong. Liver was more resistant to dietary changes and ageing than heart and skeletal muscle, which showed higher levels of coenzyme Q, cytochrome b, and cytochrome a + a 3 with ageing and lower cytochrome c oxidase and complex IV turnover. Dietary fat differentially modulated the response of tissues during ageing, with sunflower oil leading to the highest levels of coenzyme Q and cytochromes b and a + a 3. Since high levels of cytochrome b have been related to increased age, it could be hypothesized that olive oil could lead to less aged mitochondria.  相似文献   

2.
We investigate mitochondrial-lipid peroxidation of mitotic (liver) and postmitotic (heart and skeletal muscle) tissues of rats fed lifelong on two different lipid sources: virgin olive oil (monounsaturated fatty acids) and sunflower oil (n–6 polyunsaturated fatty acids). Two groups of 80 rats each were fed over 24 months on a diet differing in the lipid source (virgin olive oil or sunflower oil). Twenty rats per group were killed at 6, 12, 18, and 24 months; liver, heart, and skeletal muscle mitochondria were isolated and the lipid profile, hydroperoxides, vitamin E, and ubiquinone as well as catalase activity measured. Lipid peroxidation was higher in postmitotic tissues, and sunflower oil led to a higher degree of polyunsaturation and peroxidation. The levels of -tocopherol adapted to oxidative stress and preferentially accumulated during aging in heart and skeletal muscle. In conclusion, the type of dietary fat should be considered in studies on aging, since oxidative stress is directly modulated by this factor. This study confirms that postmitotic tissues are more prone to oxidative stress during aging and proposes a hypothesis to explain this phenomenon.  相似文献   

3.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

4.
This study investigates the effect of lifelong intake of different fat sources rich in monounsaturated (virgin olive oil), n6 polyunsaturated (sunflower oil) or n3 polyunsaturated (fish oil) fatty acids in the aged liver. Male Wistar rats fed lifelong on diets differing in the fat source were killed at 6 and at 24 months of age. Liver histopathology, mitochondrial ultrastructure, biogenesis, oxidative stress, mitochondrial electron transport chain, relative telomere length and gene expression profiles were studied. Aging led to lipid accumulation in the liver. Virgin olive oil led to the lowest oxidation and ultrastructural alterations. Sunflower oil induced fibrosis, ultrastructural alterations and high oxidation. Fish oil intensified oxidation associated with age, lowered electron transport chain activity and enhanced the relative telomere length. Gene expression changes associated with age in animals fed virgin olive oil and fish oil were related mostly to mitochondrial function and oxidative stress pathways, followed by cell cycle and telomere length control. Sunflower oil avoided gene expression changes related to age. According to the results, virgin olive oil might be considered the dietary fat source that best preserves the liver during the aging process.  相似文献   

5.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

6.
Activity-induced adaptations in skeletal muscles of iron-deficient rabbits   总被引:1,自引:0,他引:1  
The purpose of this study was to determine whether severe iron deficiency alters the adaptive response of skeletal muscle fibers to a sustained increase in tonic contractile activity. Seven weanling rabbits consumed a low iron diet and underwent phlebotomy twice weekly for 6 mo, resulting in severe anemia (mean Hb 5.5 g/dl). Compared with control animals, tibialis anterior skeletal muscles of iron-deficient animals exhibited reduced concentrations of cytochrome c (4.4 +/- 0.7 vs. 8.6 +/- 0.7 nmol/g tissue; P less than 0.01), and reduced activities of citrate synthase (83 +/- 10 vs. 133 +/- 13 mU/mg protein; P less than 0.01) and cytochrome-c oxidase (2.2 +/- 0.2 vs. 3.6 +/- 0.5 U/mg protein; P less than 0.05). In these muscles mitochondria were swollen and displayed deformed cristae. Less severe biochemical abnormalities were observed in cardiac and soleus skeletal muscles. Ten days of continuous electrical stimulation of the motor nerve supplying anterior compartment muscles of iron-deficient rabbits increased expression of mitochondrial proteins: cytochrome c was increased to 154% of control levels (P less than 0.05), and cytochrome-c oxidase and citrate synthase activities were increased to 199 and 272% of control levels, respectively (P less than 0.005). In addition, electrical pacing increased the fractional volume of mitochondria observed by electron microscopy and reduced the activity of aldolase A by 28% (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Exercise training improves insulin action in skeletal muscle, but the mechanisms of this effect are not completely understood. In particular, the role of the insulin receptor (IR) is unclear. We examined the IR and an enzyme indicative of oxidative capacity in muscle in relation to improved insulin action in 20 previously sedentary individuals before and after a 7-day program of moderate-intensity cycle ergometry. After training, insulin sensitivity increased 33% (6.20 +/- 0.91 vs. 8.22 +/- 1.12 min. microU(-1). ml(-1) mean +/- SE, pre- vs. posttraining, respectively, P < 0.05). The mitochondrial marker enzyme cytochrome c oxidase (COX) increased in vastus lateralis biopsies by 21% (P < 0.05). After training, IR autophosphorylation, determined by ELISA, was significantly increased by approximately 40% at insulin concentrations from 1 to 100 nM (P < 0.05). The training-induced improvements in IR autophosphorylation were significantly correlated with changes in muscle COX content (r = 0.65, P < 0.05). These studies indicate that, in this model of increased physical activity, improvements in IR function are an early adaptation to exercise in humans, are correlated with increases in muscle oxidative capacity, and likely contribute to the beneficial effects of exercise training on insulin action.  相似文献   

8.
We determined whether lower insulin sensitivity persists in young, nonobese, nondiabetic Mexican-American [MA; n = 13, 27.0 +/- 2.0 yr, body mass index (BMI) 23.0 +/- 0.7] compared with non-Hispanic white (NHW; n = 13, 24.8 +/- 1.5 yr, BMI 22.8 +/- 0.6) males and females after accounting for cardiorespiratory fitness (maximal O(2) uptake), abdominal fat distribution (computed tomography scans), dietary intake (4-day records), and skeletal muscle insulin-signaling protein abundance from muscle biopsies (Western blot analysis). MA were significantly less insulin sensitive compared with their NHW counterparts when estimated by homeostatic model assessment of insulin resistance (MA: 1.53 +/- 0.22 vs. NHW: 0.87 +/- 0.16, P < 0.05) and the revised quantitative insulin sensitivity check index (MA: 0.45 +/- 0.08 vs. NHW: 0.58 +/- 0.19, P = 0.05). However, skeletal muscle protein abundance of insulin receptor-beta (IRbeta), phosphatidylinositol 3-kinase p85 subunit, Akt1, Akt2, and GLUT4 were not significantly different. Differences in indexes of insulin sensitivity lost significance after percent dietary intake of palmitic acid, palmitoleic acid, and skeletal muscle protein abundance of IRbeta were accounted for. We conclude that differences in insulin sensitivity between nonobese, nondiabetic MA and NHW persist after effects of chronic and acute exercise and total and abdominal fat distribution are accounted for. These differences may be mediated, in part, by dietary fat intake.  相似文献   

9.
Health benefits of lycopene from tomato products have been suggested to be related to its antioxidant activity. Dietary fat may influence the absorption and hence the plasma levels and antioxidant activity of lycopene. In the present study, we have compared the effect of consumption of tomato products with extra-virgin olive oil vs. tomato products plus sunflower oil on plasma lycopene and antioxidant levels. Results show that the oil composition does not affect the absorption of lycopene from tomato products because similar levels of plasma lycopene (mean +/- SD) were obtained on feeding tomatoes (providing approximately 46 mg lycopene/d) for 7 d with either olive oil (0.66 +/- 0.26 vs 1.20 +/- 0.20 micromol/l, p <.002) or sunflower oil (0.67 +/- 0.27 vs. 1.14 micromol/l, p <.001). However, consumption of tomato products with olive oil significantly raised the plasma antioxidant activity (FRAP) from 930 +/- 150 to 1118 +/- 184 micromol/l, p <.01) but no effect was observed when the sunflower oil was used. The change (supplementation minus start values) in FRAP following the consumption of tomato products with oil was significantly higher for olive oil (190 +/- 101) than for sunflower oil (-9.6 +/- 99, p <. 005). In conclusion, the results of the study show that consumption of tomato products with olive oil but not with sunflower oil improves the antioxidant activity of the plasma.  相似文献   

10.
In this study we have evaluated the supplementation of olive oil with vitamin E on coenzyme Q concentration and lipid peroxidation in rat liver mitochondrial membranes. Four groups of rats were fed on virgin olive, olive plus 200 mg/kg of vitamin E or sunflower oils as lipid dietary source. To provoke an oxidative stress rats were administered intraperitoneally 10 mg/kg/day of adriamycin the last two days of the experiment. Animals fed on olive oil plus vitamin E had significantly higher coenzyme Q and vitamin E levels but a lower mitochondrial hydroperoxide concentration than rats fed on olive oil. Retinol levels were not affected, by either different diets or adriamycin treatment. In conclusion, an increase in coenzyme Q and alpha-tocopherol in these membranes can be a basis for protection against oxidation and improvement in antioxidant capacity.  相似文献   

11.
The mitochondrial theory of aging suggests that this phenomenon is the consequence of random somatic mutations in mitochondrial DNA, induced by long-term exposure to free radical attack. There are two potential dietary means of delaying the effects of free radicals on cellular aging, i.e., enrichment of mitochondrial membranes with monounsaturated fatty acids and supplementation with antioxidants. We have performed a preliminary study on male rats, 6 or 12 month old, fed with diets differing in the nature of the fat (virgin olive oil or sunflower oil) and/or with antioxidant supplementation (coenzyme Q10), analysing hydroperoxide and coenzyme Q9 and Q10 in heart mitochondria. Preliminary results allow us to conclude that the CoQ10 dietetic supplementation as well as the enrichment of the cellular membranes with monounsaturated fatty acids, successfully protect mitochondrial membranes from aged rats against the free radical insult.  相似文献   

12.
Intramyocellular lipid (IMCL) has been associated with insulin resistance. However, an association between IMCL and insulin resistance might be modulated by oxidative capacity in skeletal muscle. We examined the hypothesis that 12 wk of exercise training would increase both IMCL and the oxidative capacity of skeletal muscle in older (67.3 +/- 0.7 yr), previously sedentary subjects (n = 13; 5 men and 8 women). Maximal aerobic capacity (Vo(2 max)) increased from 1.65 +/- 0.20 to 1.85 +/- 0.14 l/min (P < 0.05), and systemic fat oxidation induced by 1 h of cycle exercise at 45% of Vo(2 max) increased (P < 0.05) from 15.03 +/- 40 to 19.29 +/- 0.80 (micromol.min(-1).kg fat-free mass(-1)). IMCL, determined by quantitative histological staining in vastus lateralis biopsies, increased (P < 0.05) from 22.9 +/- 1.9 to 25.9 +/- 2.6 arbitrary units (AU). The oxidative capacity of muscle, determined by succinate dehydrogenase staining intensity, significantly increased (P < 0.05) from 75.2 +/- 5.2 to 83.9 +/- 3.6 AU. The percentage of type I fibers significantly increased (P < 0.05) from 35.4 +/- 2.1 to 40.1 +/- 2.3%. In conclusion, exercise training increases IMCL in older persons in parallel with an enhanced capacity for fat oxidation.  相似文献   

13.
Currently, diets higher in polyunsaturated fat are believed to lower blood cholesterol concentrations, and thus reduce atherosclerosis, greater than diets containing high amounts of saturated or possibly even monounsaturated fat. The present study was designed to investigate the effect of diets containing mid- or high-linoleic oil versus the typical high-linoleic sunflower oil on LDL oxidation and the development of early atherosclerosis in a hypercholesterolemic hamster model. Animals were fed a hypercholesterolemic diet containing 10% mid-oleic sunflower oil, high-oleic olive oil, or high-linoleic sunflower oil (wt/wt) plus 0.4% cholesterol (wt/wt) for 10 weeks. After 10 weeks of dietary treatment, only the animals fed the mid-oleic sunflower oil had significant reductions in plasma LDL-C levels (-17%) compared to the high-linoleic sunflower oil group. The high-oleic olive oil-fed hamsters had significantly higher plasma triglyceride levels (+41%) compared to the high-linoleic sunflower oil-fed hamsters. The tocopherol levels in plasma LDL were significantly higher in hamsters fed the mid-oleic sunflower oil (+77%) compared to hamsters fed either the high-linoleic sunflower or high-oleic olive oil. Measurements of LDL oxidation parameters, indicated that hamsters fed the mid-oleic sunflower oil and high-oleic olive oil diets had significantly longer lag phase (+66% and +145%, respectively) and significantly lower propagation rates (-26% and -44%, respectively) and conjugated dienes formed (-17% and -25%, respectively) compared to the hamsters fed the high-linoleic sunflower oil. Relative to the high-linoleic sunflower oil, aortic cholesterol ester was reduced by -14% and -34% in the mid-oleic sunflower oil and high-oleic olive oil groups, respectively, with the latter reaching statistical significance. Although there were no significant associations between plasma lipids and lipoprotein cholesterol with aortic total cholesterol and cholesterol esters for any of the groups, the lag phase of conjugated diene formation was inversely associated with both aortic total and esterified cholesterol in the high-oleic olive oil-fed hamsters (r = -0.69, P < 0.05). The present study suggests that mid-oleic sunflower oil reduces risk factors such as lipoprotein cholesterol and oxidative stress associated with early atherosclerosis greater than the typical high-linoleic sunflower oil in hypercholesterolemic hamsters. The high-oleic olive oil not only significantly reduced oxidative stress but also reduced aortic cholesterol ester, a hallmark of early aortic atherosclerosis greater than the typical high-linoleic sunflower oil.  相似文献   

14.
The activity of tissue enzymes in iron-deficient rat and man: an overview   总被引:1,自引:0,他引:1  
The effects of iron deficiency in rat and/or man on iron-containing enzymes of different tissues is reviewed. Iron deficiency results in a decrease of skeletal muscle iron containing proteins e.g. myoglobin, cytochromes c, a + a3, and alpha-glycerophosphate oxidase. Iron deficiency produces a reduction in the activity of several respiratory enzymes in the mitochondrial fraction of cardiac muscle, particularly: NADH cytochrome c reductase, succinic cytochrome c reductase, succinic dehydrogenase and NADH ferricyanide oxidoreductase. The effects of iron deficiency on brain tissue is emphasized with respect to cytochromes, monoaminoxidase and amino acids metabolism. Host defence to infection (controversial data), decrease in body temperature, alteration of DNA synthesis, collagen and lipid metabolism, liver and gastrointestinal mucous cytochromes activity perturbations are discussed.  相似文献   

15.
A significant protective effect against cancer and coronary heart disease has been attributed to the Mediterranean diet, in which olive oil is the main source of fat. Dietary antioxidants, as phenolic compounds from virgin olive oil, are candidates for reducing cancer risk by minimizing oxidatively derived DNA damage. Etheno-DNA adducts are formed as a result of oxidative stress and lipid peroxidation. To evaluate whether phenol-rich virgin olive oil influences urinary excretion of the etheno-DNA adducts epsilonAde, epsilondA, and epsilondC as markers of oxidative stress, a randomized, double-blinded, crossover trial with three intervention periods was conducted in 28 healthy men. Each intervention was of 3 weeks' duration and separated by 2-week washout periods. Twenty-five milliliters of similar olive oils, but with differences in their phenolic content (from 2.7 to 366 mg/kg), were supplied to each subject per day. The urinary excretion of the DNA adducts was assayed by LC-MS/MS in samples before and after consumption of high phenolic content olive oil (virgin). The 24-h excretion rate did not differ significantly between baseline and after virgin olive oil consumption: epsilonAde, 105.5 +/- 40.8 vs 116.4 +/- 53.4 pmol epsilonAde/24 h (p = 0.21); epsilondA, 37.9 +/- 24.8 vs 37.6 17 +/- 24.2 pmol epsilondA/24 h (p = 0.93); and epsilondC, 218.7 +/- 157.2 vs 193.5 +/- 64.7 pmol epsilondC/24 h (p = 0.37). Multiple regression analysis showed a significant association between etheno-DNA adduct excretion rate and the dietary intake of linoleic acid (C18:2, omega-6) in healthy men. Consumption of 25 ml per day of phenol-rich virgin olive oil for 3 weeks did not modify to a significant degree the urinary excretion of etheno-DNA adducts in 28 healthy volunteers.  相似文献   

16.
The effects of cold acclimation on the activity levels of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in various tissues of the rat (Rattus norvegicus) were investigated. One group was individually housed at 4 +/- 1 degrees C and the other at 24 +/- 1 degrees C for 6 months. Chronic cold acclimation resulted in significantly (P < 0.05) increased cytochrome c oxidase activity levels in liver, kidney, heart, interscapular brown adipose tissue and gastrocnemius muscle. The activity of glutathione peroxidase was significantly (P < 0.05) elevated in liver, interscapular brown adipose tissue, lung and muscle, whereas glutathione reductase was only significantly (P < 0.05) elevated in interscapular brown adipose tissue as a result of chronic cold exposure. The results obtained are possibly indicative of a positive compensatory response against the increased production of oxygen derived radicals as a result of chronic cold exposure.  相似文献   

17.
One of the main factors that control vasoreactivity and angiogenesis is nitric oxide produced by endothelial nitric oxide synthase (eNOS). We recently showed that knocking out eNOS induces an important reduction of mitochondrial oxidative capacity in slow-twitch skeletal muscle. Here we investigated eNOS's role in physical activity and contribution to adaptation of muscle energy metabolism to exercise conditions. Physical capacity of mice null for the eNOS isoform (eNOS-/-) was estimated for 8 wk with a voluntary wheel-running protocol. In parallel, we studied energy metabolism enzyme profiles and their response to voluntary exercise in cardiac and slow-twitch soleus (Sol) and fast-twitch gastrocnemius (Gast) skeletal muscles. Weekly averaged running distance was two times lower for eNOS-/- (4.09 +/- 0.42 km/day) than for wild-type (WT; 7.74 +/- 0.42 km/day; P < 0.01) mice. Average maximal speed of running was also lower in eNOS-/- (17.2 +/- 1.4 m/min) than WT (21.2 +/- 0.9 m/min; P < 0.01) mice. Voluntary exercise influenced adaptation to exercise specifically in Sol muscle. Physical activity significantly increased Sol weight by 22% (P < 0.05) in WT but not eNOS-/- mice. WT Sol muscle did not change its metabolic profile in response to exercise, in contrast to eNOS-/- muscle, in which physical activity decreased cytochrome-c oxidase (COX; -36%; P < 0.05), citrate synthase (-37%; P < 0.06), and creatine kinase (-24%, P < 0.01) activities. Voluntary exercise did not change energy enzyme profile in heart (except for 39% increase in COX activity in WT) or Gast muscle. These results suggest that eNOS is necessary for maintaining a suitable physical capacity and that when eNOS is downregulated, even moderate exercise could worsen energy metabolism specifically in oxidative skeletal muscle.  相似文献   

18.
The influence on the lipid profile and lipid peroxidation in rabbit-liver mitochondria exerted by different edible oils high in oleic acid but different non-glyceride phenolic fractions was studied. High-phenolic virgin olive oil from the variety "Picual", the same oil submitted to an exhaustive process of washing to eliminate the phenolic fraction without altering the lipid profile and high-oleic sunflower oil (poor in phenolic compounds) were added to rabbit diets. The results reveal the importance of the different oleic: linoleic ratio of the lipid sources on the lipid profile of mitochondrial membranes. This is highlighted by the greater proportion of saturated fatty acids and the lower content in oleic acid (p < 0.05) shown by the rabbits fed on high-oleic sunflower oil. The group fed on the fat rich in phenolics exhibited the highest level of antioxidants (alpha-tocopherol, ubiquinone 10) and the highest activity of glutathione peroxidase as well as the lowest content in hydroperoxides and TBARS. The study provides evidences in vivo about the considerable antioxidant capacity of the phenolic fraction of virgin olive oil in rabbit-liver mitochondria and the important role that this non-glyceride fraction can play in the overall antioxidant benefits attributed to this oil.  相似文献   

19.
We examined peak and reserve cardiovascular function and skeletal muscle oxygenation during unilateral knee extension (ULKE) exercise in five heart transplant recipients (HTR, mean +/- SE; age: 53 +/- 3 years; years posttransplant: 6 +/- 4) and five age- and body mass-matched healthy controls (CON). Pulmonary oxygen uptake (Vo(2)(p)), heart rate (HR), stroke volume (SV), cardiac output (Q), and skeletal muscle deoxygenation (HHb) kinetics were assessed during moderate-intensity ULKE exercise. Peak exercise and reserve Vo(2)(p), Q, and systemic arterial-venous oxygen difference (a-vO(2diff)) were 23-52% lower (P < 0.05) in HTR. The reduced Q and a-vO(2diff) reserves were associated with lower HR and HHb reserves, respectively. The phase II Vo(2)(p) time delay was greater (HTR: 38 +/- 2 vs. CON: 25 +/- 1 s, P < 0.05), while time constants for phase II Vo(2)(p) (HTR: 54 +/- 8 vs. CON: 31 +/- 3 s), Q (HTR: 66 +/- 8 vs. CON: 28 +/- 4 s), and HHb (HTR: 27 +/- 5 vs. CON: 13 +/- 3 s) were significantly slower in HTR. The HR half-time was slower in HTR (113 +/- 21 s) vs. CON (21 +/- 2 s, P < 0.05); however, no significant difference was found between groups for SV kinetics (HTR: 39 +/- 8 s vs. CON 31 +/- 6 s). The lower peak Vo(2)(p) and prolonged Vo(2)(p) kinetics in HTR were secondary to impairments in both cardiovascular and skeletal muscle function that result in reduced oxygen delivery and utilization by the active muscles.  相似文献   

20.
Skeletal muscle primarily relies on carbohydrate (CHO) for energy provision during high-intensity exercise. We hypothesized that sprint interval training (SIT), or repeated sessions of high-intensity exercise, would induce rapid changes in transport proteins associated with CHO metabolism, whereas changes in skeletal muscle fatty acid transporters would occur more slowly. Eight active men (22 +/- 1 yr; peak oxygen uptake = 50 +/- 2 ml.kg(-1).min(-1)) performed 4-6 x 30 s all-out cycling efforts with 4-min recovery, 3 days/wk for 6 wk. Needle muscle biopsy samples (vastus lateralis) were obtained before training (Pre), after 1 and 6 wk of SIT, and after 1 and 6 wk of detraining. Muscle oxidative capacity, as reflected by the protein content of cytochrome c oxidase subunit 4 (COX4), increased by approximately 35% after 1 wk of SIT and remained higher compared with Pre, even after 6 wk of detraining (P < 0.05). Muscle GLUT4 content increased after 1 wk of SIT and remained approximately 20% higher compared with baseline during detraining (P < 0.05). The monocarboxylate tranporter (MCT) 4 was higher after 1 and 6 wk of SIT compared with Pre, whereas MCT1 increased after 6 wk of training and remained higher after 1 wk of detraining (P < 0.05). There was no effect of training or detraining on the muscle content of fatty acid translocase (FAT/CD36) or plasma membrane associated fatty acid binding protein (FABPpm) (P > 0.05). We conclude that short-term SIT induces rapid increases in skeletal muscle oxidative capacity but has divergent effects on proteins associated with glucose, lactate, and fatty acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号