首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Paternally expressed imprinted genes (Pegs) were systematically screened by comparing gene expression profiles of parthenogenetic and normal fertilized embryos using an oligonucleotide array. A novel imprinted gene, Peg12/Frat3, was identified along with 10 previously known Pegs. Peg12/Frat3 is expressed primarily in embryonic stages and might be a positive regulator of the Wnt signaling pathway. It locates next to the Zfp127 imprinted gene in the mouse 7C region, which has syntenic homology to the human Prader-Willi syndrome region on chromosome 15q11-q13, indicating that this imprinted region extends to the telomeric side in the mouse.  相似文献   

3.
Park CH  Uh KJ  Mulligan BP  Jeung EB  Hyun SH  Shin T  Ka H  Lee CK 《PloS one》2011,6(7):e22216
In the present study quantitative real-time PCR was used to determine the expression status of eight imprinted genes (GRB10, H19, IGF2R, XIST, IGF2, NNAT, PEG1 and PEG10) during preimplantation development, in normal fertilized and uniparental porcine embryos. The results demonstrated that, in all observed embryo samples, a non imprinted gene expression pattern up to the 16-cell stage of development was common for most genes. This was true for all classes of embryo, regardless of parental-origins and the direction of imprint. However, several differentially expressed genes (H19, IGF2, XIST and PEG10) were detected amongst the classes at the blastocyst stage of development. Most interestingly and despite the fact that maternally and paternally expressed genes should not be expressed in androgenones and parthenogenones, respectively, both uniparental embryos expressed these genes when tested for in this study. In order to account for this phenomenon, we compared the expression patterns of eight imprinted genes along with the methylation status of the IGF2/H19 DMR3 in haploid and diploid parthenogenetic embryos. Our findings revealed that IGF2, NNAT and PEG10 were silenced in haploid but not diploid parthenogenetic blastocysts and differential methylation of the IGF2/H19 DMR3 was consistently observed between haploid and diploid parthenogenetic blastocysts. These results appear to suggest that there exists a process to adjust the expression status of imprinted genes in diploid parthenogenetic embryos and that this phenomenon may be associated with altered methylation at an imprinting control region. In addition we believe that imprinted expression occurs in at least four genes, namely H19, IGF2, XIST and PEG10 in porcine blastocyst stage embryos.  相似文献   

4.
5.
The inviability of diploid androgenetic and parthenogenetic embryos suggests imprinting of paternal and maternal genes during germ cell development, and differential expression of loci depending on parental inheritance appears to be involved. To facilitate identification of imprinted genes, we have derived diploid androgenetic embryonic stem (ES) cell lines. In contrast to normal ES cells, they form tumors composed almost entirely of striated muscle when injected subcutaneously into adult mice. They also form chimeras following blastocyst injection, although many chimeras die at early postnatal stages. Surviving chimeras develop skeletal abnormalities, particularly in the rib cartilage. These results demonstrate that androgenetic ES cells are pluripotent and point to stage- and cell-specific expression of developmentally important imprinted genes.  相似文献   

6.
Liu JH  Zhu JQ  Liang XW  Yin S  Ola SI  Hou Y  Chen DY  Schatten H  Sun QY 《Genomics》2008,91(2):121-128
Epigenetic modifications are closely associated with embryo developmental potential. One of the epigenetic modifications thought to be involved in genomic imprinting is DNA methylation. Here we show that the maternally imprinted genes Snrpn and Peg1/Mest were nearly unmethylated or heavily methylated, respectively, in their differentially methylated regions (DMRs) at the two-cell stage in parthenogenetic embryos. However, both genes were gradually de novo methylated, with almost complete methylation of all CpG sites by the morula stage in parthenogenetic embryos. Unexpectedly, another maternally imprinted gene, Peg3, showed distinct dynamics of methylation during preimplantation development of diploid parthenogenetic embryos. Peg3 showed seemingly normal methylation patterns at the two-cell and morula stages, but was also strongly de novo methylated in parthenogenetic blastocysts. In contrast, the paternally imprinted genes H19 and Rasgrf1 showed complete unmethylation of their DMRs at the morula stage in parthenogenetic embryos. These results indicate that diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes and that the aberrantly homogeneous status of methylation imprints may partially account for developmental failure.  相似文献   

7.
8.
9.
Androgenetic embryos are useful model for investigating the contribution of the paternal genome to embryonic development. Little work has been done with androgenetic embryo production in domestic animals. The aim of this study was the production of diploid androgenetic sheep embryos. In vitro matured sheep oocytes were enucleated and fertilized in vitro; parthenogenetic and normally fertilized embryos were also produced as a control. Fifteen hours after in vitro fertilization (IVF), presumptive zygotes were centrifuged and scored for the number of pronucleus. IVF, parthenogenetic, and androgenetic embryos (haploid, diploid, and triploid) were cultured in SOFaa medium with bovine serum albumin (BSA). The proportion of oocytes with polyspermic fertilization increased linearly with increasing sperm concentration. After IVF, there was no significant difference in early cleavage and morula formation rates between the groups, while there was a significant difference on blastocyst development between IVF, parthenogenetic, and androgenetic embryos, the last ones displaying poor developmental potential (IVF, parthenogenetic, and haploid, diploid, and triploid androgenetic embryos: 43%, 38%, 0%, 2%, and 2%, respectively). In order to boost androgenetic embryonic development, we produced diploid androgenetic embryos through pronuclear transfer. Single pronuclei were aspirated with a bevelled pipette from haploid or diploid embryos and transferred into the perivitelline space of other haploid embryos, and the zygotes were reconstructed by electrofusion. Fusion rates approached 100%. Pronuclear transfer significantly increased blastocyst development (IVF, parthenogenetic, androgenetic: Diploid into Haploid, and Haploid into Haploid: 42%, 42%, 19%, and 3%, respectively); intriguingly, the Haploid + Diploid group showed the highest development to blastocyst stage. The main findings of our study are: (1) sheep androgenetic embryos display poor developmental ability compared with IVF and parthenogenetic embryos; (2) diploid androgenetic embryos produced by pronuclear exchange developed in higher proportion to blastocyst stage, particularly in the Diploid-Haploid group. In conclusion, pronuclear transfer is an effective method to produce sheep androgenetic blastocysts.  相似文献   

10.
Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.  相似文献   

11.
Platonov ES 《Ontogenez》2005,36(4):300-309
Genomic imprinting belongs by its nature to problems of epigenetics, which studies hereditary changes in gene expression not related to defective sequences of DNA nucleotides. Epigenetic mechanisms of control, including genomic imprinting, are involved in many processes of normal and pathological development of humans and animals. Disturbances of genomic imprinting may lead to various consequences, such as formation of developmental anomalies and syndromes in humans, appearance of the large offspring syndrome and increased mortality upon cloning of mammals, and death of parthenogenetic embryos soon after implantation and beginning of organogenesis. The death of diploid parthenogenetic or androgenetic mammalian embryos is determined by the absence of expression of the genes of imprinted loci of the maternal or paternal genome, which leads to significant defects in development of tissues and organs. A review is provided of the studies aimed at search of possible normalization of misbalanced gene activity and modulation of genomic imprinting effects during parthenogenetic development in mammals.  相似文献   

12.
13.
14.
15.
MicroRNAs (miRNAs) are a class of highly conserved small non-coding RNA molecules that play a pivotal role in several cellular functions. In this study, miRNA and messenger RNA (mRNA) profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from parthenogenetic, androgenetic, and fertilized blastocysts. The global analysis of miRNA-mRNA target pairs provided insight into the role of miRNAs in gene expression. Results showed that a total of 125 miRNAs and 2394 mRNAs were differentially expressed between androgenetic ESCs (aESCs) and fertilized ESCs (fESCs), a total of 42 miRNAs and 87 mRNAs were differentially expressed between parthenogenetic ESCs (pESCs) and fESCs, and a total of 99 miRNAs and 1788 mRNAs were differentially expressed between aESCs and pESCs. In addition, a total of 575, 5 and 376 miRNA-mRNA target pairs were observed in aESCs vs. fESCs, pESCs vs. fESCs, and aESCs vs. pESCs, respectively. Furthermore, 15 known imprinted genes and 16 putative uniparentally expressed miRNAs with high expression levels were confirmed by both microarray and real-time RT-PCR. Finally, transfection of miRNA inhibitors was performed to validate the regulatory relationship between putative maternally expressed miRNAs and target mRNAs. Inhibition of miR-880 increased the expression of Peg3, Dyrk1b, and Prrg2 mRNA, inhibition of miR-363 increased the expression of Nfat5 and Soat1 mRNA, and inhibition of miR-883b-5p increased Nfat5, Tacstd2, and Ppapdc1 mRNA. These results warrant a functional study to fully understand the underlying regulation of genomic imprinting in early embryo development.  相似文献   

16.
17.
The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.  相似文献   

18.
Genomic imprinting belongs by its nature to problems of epigenetics, which studies hereditary changes in gene expression not related to defective sequences of DNA nucleotides. Epigenetic mechanisms of control, including genomic imprinting, are involved in many processes of normal and pathological development of humans and animals. Disturbances of genomic imprinting may lead to various consequences, such as formation of developmental anomalies and syndromes in humans, appearance of the large offspring syndrome and increased mortality upon cloning of mammals, and death of parthenogenetic embryos soon after implantation and beginning of organogenesis. The death of diploid parthenogenetic or androgenetic mammalian embryos is determined by the absence of expression of the genes of imprinted loci of the maternal or paternal genome, which leads to significant defects in development of tissues and organs. A review is provided of the studies aimed at search of possible normalization of misbalanced gene activity and modulation of genomic imprinting effects during parthenogenetic development in mammals.__________Translated from Ontogenez, Vol. 36, No. 4, 2005, pp. 300–309.Original Russian Text Copyright © 2005 by Platonov.  相似文献   

19.
Eom H  Lee CG  Jin E 《Planta》2006,223(6):1231-1242
The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号