首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cytidylyltransferases are a family of enzymes that utilize cytidine 5′-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from 14C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.  相似文献   

2.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

3.
CTP:phosphocholine cytidylyltransferase (CCT) is an enzyme critical for cellular phosphatidylcholine (PC) synthesis, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline. We have isolated a cDNA encoding an isoform of CCT from Drosophila melanogaster and expressed the recombinant native and 6 x -His-tagged forms using a baculovirus expression system in Spodoptera frugiperda (Sf9) insect cells. Immunoblot using anti-phospho amino acid antibodies reveals the enzyme is phosphorylated on serine and threonine residues, but not tyrosine. The purified native enzyme exhibits a V(max) value of 1352+/-159 nmol CDP-choline/min/mg, a K(m) value of 0.50+/-0.09 mM for phosphocholine, and a K' (Hill constant) value of 0.72+/-0.10 mM for CTP. The 6 x -His-tagged enzyme has similar properties with a V(max) value of 2254+/-253 nmol CDP-choline/min/mg, a K(m) value of 0.63+/-0.13 mM for phosphocholine and a K' for CTP equal to 0.81+/-0.20 mM. Each form of the enzyme was activated to a similar extent by synthetic PC vesicles containing 50 mol% oleate. The efficiency of lipid activation was greatest using PC vesicles containing diphosphatidylglycerol (DPG), significantly less efficient activation was seen when phosphatidylserine (PS) and phosphatidylinositol (PI) were incorporated into vesicles, and PC alone or PC vesicles containing phosphatidylethanolamine were the least efficient enzyme activators.  相似文献   

4.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.  相似文献   

5.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the conversion of phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the eventual synthesis of phosphatidylcholine (PC). The enzyme is regulated by reversible association with cellular membranes, with the rate of catalysis increasing following membrane association. Two isoforms of CCT appear to be present in higher eukaryotes, including Drosophila melanogaster, which contains the tandem genes Cct1 and Cct2. Before this study, the CCT1 isoform had not been characterized and the cellular location of each enzyme was unknown. In this investigation, the cDNA encoding the CCT1 isoform from D. melanogaster has been cloned and the recombinant enzyme purified and characterized to determine catalytic properties and the effect of lipid vesicles on activity. CCT1 exhibited a V max of 23904 nmol of CDP-choline min (-1) mg (-1) and apparent K m values for phosphocholine and CTP of 2.29 and 1.21 mM, respectively, in the presence of 20 muM PC/oleate vesicles. Cytidylyltransferases require a divalent cation for catalysis, and the cation preference of CCT1 was found to be as follows: Mg (2+) > Mn (2+) = Co (2+) > Ca (2+) = Ni (2+) > Zn (2+). The activity of the enzyme is stimulated by a variety of lipids, including phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol, and the fatty acid oleate. Phosphatidylethanolamine and phosphatidic acid, however, did not have a significant effect on CCT1 activity. The cellular location of both CCT1 and CCT2 isoforms was elucidated by expressing green fluorescent fusion proteins in cultured D. melanogaster Schneider 2 cells. CCT1 was identified as the nuclear isoform, while CCT2 is cytoplasmic.  相似文献   

6.
The influence of chlorpromazine and trifluoperazine on phosphatidylcholine biosynthesis in HeLa cells was investigated. HeLa cells were prelabeled with [Me-3H]choline for 1 h. The cells were subsequently incubated with various concentrations of drugs. Both compounds were potent inhibitors of phosphatidylcholine biosynthesis, with 50% inhibition by 5 micron of either drug. Analysis of the radioactivity in the soluble precursors indicated a block in the conversion of phosphocholine to CDPcholine catalyzed by CTP:phosphocholine cytidylyltransferase (CTP:cholinephosphate cytidylyltransferase, EC 2.7.7.15). Inhibition by these drugs was slowly reversed after incubation for more than 2 h, or was immediately abolished when 0.4 mM oleate was included in the cell medium or when the drug-containing medium was removed. The subcellular location of the cytidylyltransferase was unaffected by either drug, nor did the drugs alter the rate of release of cytidylyltransferase from HeLa cells by digitonin treatment. The drugs had a direct inhibitory effect on cytidylyltransferase activity in HeLa cell postmitochondrial supernatants. Half-maximal inhibition was achieved with 30 microM trifluoperazine and 50 microM chlorpromazine. These drugs did not change the apparent Km of the cytidylyltransferase for CTP or phosphocholine. Inhibition of cytidylyltransferase by these compounds was reversible with exogenous phospholipid or oleate in the enzyme assay. The data indicate that both drugs inhibit phosphatidylcholine synthesis by an effect on the cytidylyltransferase. The mechanism of action remains unknown at this time.  相似文献   

7.
The effects of Ca2+, ionophore A23187, and vasopressin on CTP:phosphocholine cytidylyltransferase were investigated. Cytidylyltransferase is present in the cytosol and in a membrane-bound form on the microsomes. Digitonin treatment caused release of the cytosolic form rapidly. Addition of 7 mM Ca2+ to hepatocyte medium resulted in a 3-fold decrease in cytidylyltransferase released by digitonin treatment (1.7 +/- 0.1 nmol/min per mg compared to 5.1 +/- 0.2 nmol/min per mg in the control). Verapamil, a calcium channel blocker, partially overcame this effect of Ca2+. Ionophore A23187 and vasopressin both mimicked the effect of Ca2+ and resulted in a decrease in cytidylyltransferase release (2.4 +/- 0.1 nmol/min per mg and 2.5 +/- 0.2 nmol/min per mg, respectively) compared to control (3.4 +/- 0.1 nmol/min per mg). In agreement with the digitonin experiments, incubation with 7 mM Ca2+ resulted in a decrease in cytidylyltransferase in the cytosol (from 4.0 to 1.2 mol/min per mg) and a corresponding increase in the microsomes (from 0.6 to 2.4 nmol/min per mg). Verapamil partially blocked this translocation caused by Ca2+. Ionophore A23187 and vasopressin also caused translocation of the cytidylyltransferase from the cytosol to the microsomes. The addition of Ca2+ also resulted in an increase in PC synthesis. With 7 mM Ca2+ in the medium, the label associated with PC increased to 3.8 +/- 0.1.10(6) dpm/dish from 2.7 +/- 0.1.10(6) dpm/dish after 10 min. PC degradation was also affected, since 7 mM Ca2+ in the medium resulted in an increase in LPC formation both in the cell and the medium. We conclude that high concentrations of calcium in the hepatocyte medium can cause a stimulation of CTP:phosphocholine cytidylyltransferase and PC synthesis in cultured hepatocytes.  相似文献   

8.
In order to investigate the mechanisms involved in some brain disorders at the membrane level, we studied the kinetics and biochemical properties of brain CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15), the rate-limiting enzyme of the two-step biosynthesis of phosphatidylcholine. This enzyme catalyzes the biosynthesis of CDPcholine from choline phosphate and CTP. We found that its subcellular localization (mainly in microsomal and cytosolic fractions) was different from that of phosphatidylethanolamine N-methyltransferase (EC 2.1.1.17), the enzyme of the alternative pathway for phosphatidylcholine synthesis. CTP:choline-phosphate cytidylyltransferase showed a Km of 10 mM for CTP and 0.3 mM for choline phosphate and exhibited a random mechanism. CDPcholine, the reaction product, was a competitive inhibitor of choline phosphate and CTP utilization and had a Ki of 0.090 mM. Both particulate and soluble enzymes required Mg2+ and exhibited an optimal pH at about 7. Cytosolic activity was enhanced by addition of unsaturated fatty acids or phospholipids extracted from brain membranes. Such an enhancement was increased with the centrifugation time used for preparing the soluble enzyme.  相似文献   

9.
CTP:phosphocholine cytidylyltransferase (CCT) regulates the biosynthesis of phosphatidylcholine in mammalian cells. In order to understand the mechanism by which this enzyme controls phosphatidylcholine synthesis, we have initiated studies of CCT from the model genetic system, the yeast Saccharomyces cerevisiae. The yeast CCT gene was isolated from genomic DNA using the polymerase chain reaction and was found to encode tyrosine at position 192 instead of histidine, as originally reported. Levels of expression of yeast CCT activity in Escherichia coli or in the yeast, Pichia pastoris, were somewhat low. Expression of yeast CCT in a baculovirus system as a 6x-His-tag fusion protein was higher and was used to purify yeast CCT by a procedure that included delipidation. Kinetic characterization revealed that yeast CCT was activated approximately 20-fold by 20 microM phosphatidylcholine:oleate vesicles, a level 5-fold lower than that necessary for maximal activation of rat CCT. The k(cat) value was 31.3 s(-1) in the presence of lipid and 1.5 s(-1) in the absence of lipid. The K(m) values for the substrates CTP and phosphocholine did not change significantly upon activation by lipids; K(m) values in the presence of lipid were 0.80 mM for phosphocholine and 1.4 mM for CTP while K(m) values in the absence of lipid were 1.2 mM for phosphocholine and 0.8 mM for CTP. Activation of yeast CCT, therefore, appears to be due to an increase in the k(cat) value upon lipid binding.  相似文献   

10.
The effects of cholecystokinin (CCK) and other pancreatic secretagogues on phosphatidylcholine (PC) synthesis were studied in isolated rat pancreatic acini. When acini were incubated with [3H]choline in the presence of 1 nM CCK-octapeptide (CCK8) for 60 min, the incorporations of [3H]choline into both water-soluble choline metabolites and PC in acini were reduced by CCK8 to 74 and 41% of control, respectively. Pulse-chase study revealed that CCK8 reduced both the disappearance of phosphocholine and the synthesis of PC. Other Ca(2+)-mobilizing secretagogues such as carbamylcholine, bombesin, and Ca2+ ionophore A23187 also reduced PC synthesis to the same extent as did CCK8. When combined with 1 nM CCK8, A23187 or carbamylcholine did not further inhibit PC synthesis. Furthermore, W-7 or W-5, a calmodulin antagonist, reversed the inhibition by CCK8 of PC synthesis, suggesting that a Ca(2+)-calmodulin-dependent pathway may be involved in CCK-induced inhibition of PC synthesis in acini. By contrast, neither cAMP-dependent secretagogues such as secretin and dibutyryl cAMP nor a phorbol ester had any effect on PC synthesis in acini. Staurosporine or H-7, a protein kinase C inhibitor, did not affect the inhibition by CCK of PC synthesis. The analysis of enzyme activity involved in PC synthesis via CDP-choline pathway showed that CCK treatment of acini reduced CTP:phosphocholine cytidylyltransferase activity in both cytosolic and particulate fraction, a finding consistent with the delayed disappearance of phosphocholine induced by CCK in pulse-chase study. By contrast, CCK treatment of acini did not alter the activities of choline kinase and phosphocholine transferase in acini. The extent of inhibition by CCK of cytidylyltransferase activity became much larger when subcellular fractions of acini were prepared in the presence of phosphatase inhibitors. In addition, W-7 reversed the inhibitory effect of CCK treatment on cytidylyltransferase activity in acini. When acini were labeled with [3H]myristic acid and chased, CCK8 (1 nM) reduced the synthesis of [3H]myristic acid-labeled PC to 27% of control after a 60-min chase period. This inhibition of PC synthesis induced by CCK was accompanied by a delayed disappearance of [3H]diacylglycerol, the radioactivity of which was 225% of control at 60 min. These results indicate that CCK inhibits PC synthesis by inducing both the reduction of choline uptake into acini and the inhibition of CTP:phosphocholine cytidylyltransferase activity. Furthermore, the results suggest the possibility that the activation of Ca(2+)-calmodulin-dependent kinase in response to CCK may phosphorylate cytidylyltransferase thereby decreasing this enzyme activity in pancreatic acinar cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
In Saccharomyces cerevisiae phosphatidylcholine (PC) is synthesized in the ER and transported to mitochondria via an unknown mechanism. The transport of PC synthesized by the triple methylation of phosphatidylethanolamine was investigated by pulsing yeast spheroplasts with l-[methyl-3H]methionine, followed by a chase with unlabeled methionine and subcellular fractionation. During the pulse, increasing amounts of PC and its mono- and dimethylated precursors (PMME and PDME, respectively) appear in similar proportions in both microsomes and mitochondria, with the extent of incorporation in microsomes being twice that in mitochondria. During the chase, the [3H]-methyl label from the precursors accumulates into PC with similar kinetics in both organelles. The results demonstrate that transport of methylated phospholipids from ER to mitochondria is 1) coupled to synthesis, 2) not selective for PC, 3) at least as fast as the fastest step in the methylation of PE, and 4) bidirectional for PMME and PDME. The interorganellar equilibration of methylated phospholipids was reconstituted in vitro and did not depend on ongoing methylation, cytosolic factors, ATP, and energization of the mitochondria, although energization could accelerate the reaction. The exchange of methylated phospholipids was reduced after pretreating both microsomes and mitochondria with trypsin, indicating the involvement of membrane proteins from both organelles.  相似文献   

12.
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.  相似文献   

13.
Regulation of eukaryotic phospholipid metabolism   总被引:2,自引:0,他引:2  
Phospholipids have diverse and critical roles in cellular metabolism and function. Questions about the mechanisms of regulation of phospholipid synthesis are being investigated with a variety of systems and approaches. For example, the yeast Saccharomyces cerevisiae is an organism in which both biochemical and genetic analyses are used. Biochemical approaches have yielded considerable information on the regulatory properties of enzymes of phospholipid biosynthesis. Studies of the activity of purified phosphatidylserine synthase have suggested how that enzyme is influenced by membrane phospholipids in the cell. The enzyme that regulates mammalian phosphatidylcholine biosynthesis, CTP:phosphocholine cytidylyltransferase, is also influenced by phospholipids. In addition, the activity of this enzyme often correlates with its translocation to membranes. The location of such enzymes in the cell is of particular interest in light of the possibility that the enzymatic reactions may be efficiently coupled in vivo. Techniques to render cultured cells permeable to phosphorylated molecules indicated that the enzymes of phosphatidylcholine biosynthesis may exist in an organized compartment so that the precursors of phosphatidylcholine are efficiently channeled through the pathway. To ask how phospholipids are transported in the cell, a combined biochemical and genetic approach has been used. These studies have revealed that the phosphatidylinositol/phosphatidylcholine transfer protein, considered to mediate intracellular phospholipid transfer, is a critical component of the secretory pathway for proteins. These results have allowed formulation of a number of new questions on the regulation of phospholipid metabolism and its relationship to general membrane processes.  相似文献   

14.
Rats fed a safflower oil (alpha-linolenic acid (ALNA)-deficient) diet over the course of two generations had significantly decreased docosahexaenoic acid (22:6n-3) and increased docosapentaenoic acid (22:5n-6) contents in the major retinal phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) when compared with those fed a perilla oil (ALNA-sufficient) diet, but the compositions of phosphatidylinositol acyl chains were relatively unaffected. The contents of individual phospholipids in the retina were essentially the same for the two dietary groups. The activities of the rate-limiting enzymes in the de novo synthesis of PC and PE, CTP:phosphocholine cytidylyltransferase (CT), and CTP:phosphoethanolamine cytidylyltransferase (ET), respectively, were measured in the retinas excised at 5:00, 9:00, 13:00, and 17:00 h from rats adapted to a 24-h cycle with lights on from 7:00 to 19:00 h. Both enzymes exhibited significant diurnal rhythms with the lowest activities at 5:00 h and gradually increasing activities following exposure of the rats to light; the maximum activities were at 13:00 h for CT and 17:00 h for ET. The diurnal rhythms were not significantly affected by the above-mentioned diets. However, both enzyme activities at each collection time point were significantly lower in the safflower oil group than in the perilla oil group. These results suggest that retinal phospholipid turnover associated with shedding, phagocytosis, and resynthesis of the rod outer segments is limited by ALNA deficiency.  相似文献   

15.
We reported in a recent publication that hexadecylphosphocholine (HePC), a lysophospholipid analogue, reduces cell proliferation in HepG2 cells and at the same time inhibits the biosynthesis of phosphatidylcholine (PC) via CDP-choline by acting upon CTP:phosphocholine cytidylyltransferase (CT). We describe here the results of our study into the influence of HePC on other biosynthetic pathways of glycerolipids. HePC clearly decreased the incorporation of the exogenous precursor [1,2,3-3H]glycerol into PC and phosphatidylserine (PS) whilst increasing that of the neutral lipids diacylglycerol (DAG) and triacylglycerol (TAG). Interestingly, the uptake of L-[3-3H]serine into PS and other phospholipids remained unchanged by HePC and neither was the activity of either PS synthase or PS decarboxylase altered, demonstrating that the biosynthesis of PS is unaffected by HePC. We also analyzed the water-soluble intermediates and final product of the CDP-ethanolamine pathway and found that HePC caused an increase in the incorporation of [1,2-14C]ethanolamine into CDP-ethanolamine and phosphatidylethanolamine (PE) and a decrease in ethanolamine phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine cytidylyltransferase activity. Since PE can be methylated to give PC, we studied this process further and observed that HePC decreased the synthesis of PC from PE by inhibiting the PE N-methyltransferase activity. These results constitute the first experimental evidence that the inhibition of the synthesis of PC via CDP-choline by HePC is not counterbalanced by any increase in its formation via methylation. On the contrary, in the presence of HePC both pathways seem to contribute jointly to a decrease in the overall synthesis of PC in HepG2 cells.  相似文献   

16.
Addition of oleate, oleyl alcohol, or palmitate to HeLa cell medium resulted in a rapid stimulation of PC synthesis and activation of CTP: phosphocholine cytidylyltransferase. Stimulation was optimal with 0.35 mM oleate, 0.3 mM oleyl alcohol and 5 mM palmitate, or 1 mM palmitate if EGTA were added to the medium. The cytidylyltransferase was activated by translocation of the inactive cytosolic form to membranes. In untreated cells approx. 30% of the total cytidylyltransferase was membrane bound, while in treated cells, 80-90% was membrane associated. Addition of bovine serum albumin (10 mg/ml) to cells previously treated with oleate (0.35 mM) rapidly removed cellular fatty acid, and the membrane-bound cytidylyltransferase activity returned to approx. 30%. Similar results were obtained by extraction of membranes with albumin in vitro. Although 95% of the free fatty acid was extracted, 30-40% of the membrane cytidylyltransferase remained bound. Translocation of cytidylyltransferase between isolated cytosol and microsomal fractions was promoted by addition of oleate, palmitate, oleyl alcohol, and monoolein. Addition of diacylglycerol, lysophosphatidylcholine, lysophosphatidylethanolamine, calcium palmitate, and detergents such as Triton X-100, cholate or Zwittergent did not stimulate translocation of the enzyme. Addition of oleoyl-CoA promoited translocation, however, 40% of it was hydrolyzed releasing free oleic acid. Cytosolic cytidylyltransferase bound to microsomes pre-treated with phospholipase C, which had 7-fold elevated diacylglycerol content. Fatty acid-promoted translocation was blocked by Triton X-100, but not by 1 M KCl. These results suggest that a variety of compounds with differing head group size and charge, and number of hydrocarbon chains can function as translocators, and that hydrophobic rather than ionic interactions mediate the binding of cytidylyltransferase to membranes.  相似文献   

17.
Homeostatic cell physiology is preserved through the fidelity of the cell membranes restitution. The task is accomplished through the assembly of the precisely duplicated segments of the cell membranes, and transport to the site of their function. Here we examined the mechanism that initiates and directs the restitution of the intra- and extracellular membranes of gastric mucosal cell. The homeostatic restitution of gastrointestinal epithelial cell membrane components was investigated by studying the lipidomic processes in endoplasmic reticulum (ER) and Golgi. The biomembrane lipid synthesis during the formation of transport vesicles in the systems containing isolated organelle and the cell-specific cytosol (Cyt) from rat gastric mucosal epithelial cells was assessed. The results revealed that lipids of ER transport vesicle and the transmembrane and intravesicular cargo are delivered en bloc to the point of destination. En bloc delivery of proteins, incorporated into predetermined in ER lipid environment, ensures fidelity of the membrane modification in Golgi and the restitution of the lipid and protein elements that are consistent with the organelle and the cell function. The mechanism that maintains apical membrane restitution is mediated through the synthesis of membrane segments containing ceramide (Cer). The Cer-containing membranes and protein cargo are further specialized in Golgi. The portion of the vesicles destined for apical membrane renewal contains glycosphingolipids and phosphatidylinositol 3-phosphate. The vesicles containing phosphatidylinositol 4-phosphate are directed to endosomes. Our findings revealed that the preservation of the physiological equilibrium in cell structure and function is attributed to (1) a complete membrane segment synthesis in ER, (2) its transport in the form of ER-transport vesicle to Golgi, (3) the membrane components-defined maturation of lipids and proteins in Golgi, and (4) en bloc transfer of the new segment of the membrane to the cell apical membrane or intracellular organelle.  相似文献   

18.
Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ~50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase alpha, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase alpha is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase alpha to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214-228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.  相似文献   

19.
The mutant Chinese hamster ovary cell line MT58 contains a thermosensitive mutation in CTP:phosphocholine cytidylyltransferase, the regulatory enzyme in the CDP-choline pathway. As a result, MT58 cells have a 50% decrease in their phosphatidylcholine (PC) level within 24 h when cultured at the nonpermissive temperature (40°C). This is due to a relative rapid breakdown of PC that is not compensated for by the inhibition of de novo PC synthesis. Despite this drastic decrease in cellular PC content, cells are viable and can proliferate by addition of lysophosphatidylcholine. By [3H]oleate labeling, we found that the FA moiety of the degraded PC is recovered in triacylglycerol. In accordance with this finding, an accumulation of lipid droplets is seen in MT58 cells. Analysis of PC-depleted MT58 cells by electron and fluorescence microscopy revealed a partial dilation of the rough endoplasmic reticulum, resulting in spherical structures on both sites of the nucleus, whereas the morphology of the plasma membrane, mitochondria, and Golgi complex was unaffected. In contrast to these morphological observations, protein transport from the ER remains intact. Surprisingly, protein transport at the level of the Golgi complex is impaired. Our data suggest that the transport processes at the Golgi complex are regulated by distal changes in lipid metabolism.  相似文献   

20.
Phosphatidylcholine is the most abundant phospholipid in eukaryotic cells, comprising 50% of total cellular phospholipid, and thus plays a major role in cellular and organellar biogenesis. In this study, we have used both nutritional deprivation as well as a conditional temperature sensitive allele of PCT1 (CTP:phosphocholine cytidylyltransferase) coupled with an inactivated phosphatidylethanolamine methylation pathway to determine how cells respond to inactivation of phosphatidylcholine synthesis. Metabolic studies determined that phosphatidylcholine biosynthesis decreased to negligible levels within 1 h upon shift to the nonpermissive temperature for the temperature-sensitive PCT1 allele. Phosphatidylcholine mass decreased to negligible levels upon removal of choline from the medium or growth at the nonpermissive temperature, with the levels of the other major phospholipids increasing slightly. Cell growth rate visibly slowed upon cessation of phosphatidylcholine synthesis. Cells remained viable for 7-8 h after phosphatidylcholine synthesis was prevented; however, at time points beyond 8 h, viability was significantly reduced but only if the cells had been previously grown at 37 degrees C and not 25 degrees C. The inhibition of phosphatidylcholine synthesis at 37 degrees C did not alter Golgi-derived vesicle transport to the vacuole as monitored by carboxypeptidase Y processing or to the plasma membrane as determined by invertase secretion. Immunofluorescence microscopy localized Pct1p to the nucleus and nuclear membrane. Pct1p activity is regulated by Sec14p, a cytoplasm/Golgi localized phosphatidylcholine/phosphatidylinositol binding protein that regulates Golgi-derived vesicle transport partially through its ligand-dependent regulation of PCT1 derived enzyme activity. Our nuclear localization of Pct1p indicates that the regulation of Pct1p by Sec14p is indirect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号