首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the non-peptide selective angiotensin II AT1 receptor antagonist DuP 753 and its metabolite EXP 3174, of the peptide ANGII analogues saralasin and sarmesin and of the newly synthesized imidazole compound (1-methyl-4,5-diphenylimidazole) on ANGII-induced drinking in rats were investigated. The effect of the AT2 selective antagonist PD 123319 on ANGII-induced drinking in rats was also studied. DuP 753, EXP 3174, saralasin and sarmesin (peptides and non-peptides) dose-dependently inhibited ANGII-induced water intake. The ID50 values of these drugs showed the following order of potency: EXP 3174 > saralasin > sarmesin > DuP 753 indicating their ability to block central AT1 receptors. The imidazole compound increased ANGII-induced water intake suggesting its AT1 receptor agonistic properties. PD 123319 inhibited ANGII-induced water intake at a higher dose (64 nmol), allowing to assume AT1 receptor agonistic properties.  相似文献   

2.
Identification of angiotensin II receptor subtypes   总被引:40,自引:0,他引:40  
We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.  相似文献   

3.
Angiotensin II receptor binding sites in rat liver and PC12 cells differ in their affinities for a nonpeptidic antagonist, DuP 753, and p-aminophenylalanine6 angiotensin II. In liver, which primarily contains the sulfhydryl reducing agent-inhibited type of angiotensin II receptor, which we refer to as the AII alpha subtype, DuP 753 displays an IC50 of 55 nM, while p-aminophenylalanine6 angiotensin II displays an IC50 of 8-9 microM. In PC12 cells, which primarily contain the angiotensin II receptor type whose binding affinity is enhanced by sulfhydryl reducing agents (AII beta), DuP 753 displays an IC50 in excess of 100 microM, while p-aminophenylalanine6 angiotensin II displays an IC50 of 12 nM. p-Aminophenylalanine6 angiotensin II binding affinity in liver is decreased in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) suggesting that this analogue is an agonist.  相似文献   

4.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6 +/- 1.4 microM/1.1 +/- 0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 microM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50 = 46 microM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

5.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

6.
DuP 532 is a novel nonpeptide angiotensin II (AII) receptor antagonist under development for the treatment of hypertension. DuP 532 is a more potent antihypertensive agent in renal hypertensive rats (ED30 = 0.042 mg/kg, i.v.) and displays a similar or longer duration of action than the previously described AII antagonist, DuP 753. DuP 532, in contrast to DuP 753, is a noncompetitive antagonist of AII-induced contractions of rabbit aortic strips (KB = 1.1 x 10(-10) M). However, the inhibition of AII binding by DuP 532 in rat adrenal cortex does not correlate with either the aortic contractile response or with the hypotensive response. Assay conditions were evaluated and the presence or absence of BSA was shown to markedly affect the apparent binding affinity of DuP 532 and other 5-carboxylic acid derivatives. DuP 753 and other compounds were much less affected. The IC50 for DuP 532 was 4.7 x 10(-6) M with and 3 x 10(-9) M without BSA. The IC50s for DuP 753 were 1.7 x 10(-8) M with and 5 x -9 M without BSA. Both compounds with or without BSA did not completely inhibit AII binding which is characteristic of AT1 selectivity. BSA also reduced the effect of DuP 532 on the AII-induced contractions of rat main pulmonary artery preparations and the AII-induced Ca2+ mobilization in rat aortic smooth muscle cells. DuP 532 was very specific for AT1 receptors and did not interfere with receptors associated with neurotensin, prazosin, bradykinin, nitrendipine, or vasopressin. It is concluded that DuP 532 represents a new class of specific, but noncompetitive. AII receptor antagonists whose binding characteristics may provide new insight into AII receptor function.  相似文献   

7.
The effects of SQ 30741, a thromboxane A2 (TxA2) receptor blocking agent, on responses to the TxA2 mimic, U-46619, were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 30741 in doses of 1-2 mg/kg iv markedly reduced vasoconstrictor responses to U-46619 without altering responses to prostaglandin (PG) F2 alpha or PGD2 and serotonin. SQ 30741 had no significant effect on mean vascular pressures in the cat, and the dose-response curve for U-46619 was shifted to the right in a parallel manner with a similar apparent maximal response. In addition to not altering responses to PGF2 alpha, PGD2 alpha, or serotonin, SQ 30741 (2 mg/kg iv) was without significant effect on pulmonary vasoconstrictor responses to the PGD2 metabolite 9 alpha, 11 beta-PGF2, norepinephrine, angiotensin II, BAY K 8644, endothelin 1, or endothelin 2. Although responses to vasoconstrictor agents, which act through a variety of mechanisms, were not altered, responses to the PG and TxA2 precursor, arachidonic acid, were reduced significantly. The duration of the TxA2 receptor blockade was approximately 30 and 75 min at the 1- and 2-mg/kg iv doses of the antagonist, respectively. The present data show that SQ 30741 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are due in large part to the formation of TxA2 and that discrete TxA2 receptors unrelated to receptors activated by PGD2 or PGF2 alpha are most likely located in resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

8.
The present studies examine the effect of the nonpeptide angiotensin II (AII) type 1 receptor antagonist, DuP 753, on water intake in rats treated with dipsogenic stimuli, which are thought to induce drinking via release of renin and subsequent formation of AII. Subcutaneous administration of DuP 753 in doses that are known to inhibit drinking induced by AII failed to inhibit the water intake of rats following subcutaneous administration of the beta-adrenoceptor agonist isoproterenol. The peptide antagonist1 Sar, 8Ileu-AII, which blocks both AII type 1 and AII type 2 receptors, also failed to inhibit isoproterenol-induced drinking, suggesting that neither subtype is involved in this drinking response. Additional studies verified previous reports that acute subcutaneous administration of both the beta-adrenoceptor antagonist propranolol and the angiotensin I-converting enzyme inhibitor captopril could block the drinking response to subcutaneous administration of isoproterenol. Subcutaneous administration of DuP 753 also failed to inhibit the drinking responses to subcutaneous administration of serotonin, 5-hydroxytryptophan, hypertonic saline, and polyethylene glycol. However, central intraventricular administration of DuP 753 inhibited the drinking response to subcutaneous administration of isoproterenol. The results are discussed in terms of the importance of AII in mediating isoproterenol-, serotonin-, and 5-hydroxytryptophan-induced water intake and suggest a need to readdress this mechanism.  相似文献   

9.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6±1.4 μM/1.1±0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 μM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50=46 μM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

10.
The effect of angiotensin II (Ang II) on the early growth response gene-1 (Egr-1) mRNA, on the Egr-1 protein and on the phosphoinositide PI turnover signalling system was investigated in the presence and absence of EXP3174, a potent non-peptide Ang II receptor antagonist. Ang II induced an accumulation of 3.4 kb Egr-1 mRNA and the 80 kDa Egr-1 protein, with a maximum at 30 min and 60 min, respectively. EXP3174 blocked the Ang II-induced increase of inositol phosphates, Egr-1 mRNA and the Egr-1 protein, suggesting the involvement of the PI signalling system by the expression of the Egr-1 gene.  相似文献   

11.
The effects of peptide and non-peptide angiotensin II receptor antagonists on the responses to angiotensin II were examined using aortic rings and skin isolated from the toad. The contractile responses of aortic rings to (Ala-Pro-Gly) angiotensin II were inhibited by the angiotensin II analogue Leu8 angiotensin II, with a pA2 value of 7.6. Similarly, the concentration response curve for (Ala-Pro-Gly) angiotensin II was displaced to the right by the specific angiotensin receptor subtype antagonist DuP 753, with a pA2 value of 6.0. In contrast, the angiotensin receptor subtype 2 antagonists PD 123177 and CGP 42112A did not modify the contractile response to (Ala-Pro-Gly) angiotensin II. None of the antagonists was able to alter the contractile response to norepinephrine. Both Leu8 angiotensin II (10-8 mol·l-1) and DuP 753 (10-6 mol·l-1) partially inhibited angiotensin III-induced contractions in toad aorta. Angiotensin III, in turn, exhibited lower activity than [Asn1-Val5] angiotensin II in this preparation, its molar potency ratio being 0.293. Previous work from this laboratory reported that osmotic water permeability in the skin of the toad Bufo arenarum was increased by angiotensin II, the effect being blocked by the peptide antagonist Leu8 angiotensin II. The hydrosmotic response to [Asn1-Val5] angiotensin II (10-7 mol·l-1) was significantly inhibited by DuP 753 (10-6 and 5×10-6 mol·l-1), whereas the response was not inhibited by a tenfold higher concentration of either PD 123177 or CGP 42112A. DuP 753 (10-6 mol·l-1) also inhibited the hydrosmotic response to angiotensin III (10-7 mol·l-1). These results suggest that receptors for angiotensin II present in isolated toad aorta and skin exhibit pharmacological features similar to those characterized as angiotensin subtype 1 in mammalian tissues.Abbreviations AT 1 angiotensin receptor subtype 1 - AT 2 angiotensin receptor subtype 2 - AT II angiotensin II - AT III angiotensin III - CDRC cumulative doseresponse curve(s) - NE norepinephrine - SCC short-circuit current  相似文献   

12.
The aim of this work was to investigate the interactions between angiotensin II (Ang II) and galanin(1-29) [GAL(1-29)] or its N-terminal fragment galanin(1-15) [GAL(1-15)] on central cardiovascular control. The involvement of angiotensin type1 (AT1) receptor subtype was analyzed by the AT1 antagonist, DuP 753. Anesthesized male Sprague-Dawley rats received intracisternal microinjections of Ang II (3 nmol) with GAL(1-29) (3 nmol) or GAL(1-15) (0.1 nmol) alone or in combination. The changes in mean arterial pressure (MAP) and heart rate (HR) recorded from the femoral artery were analyzed. The injection of Ang II and GAL(1-15) alone did not produce any change in MAP. However, coinjections of both Ang II and GAL(1-15) elicited a significant vasopressor response. This response was blocked by DuP 753. Ang II and GAL(1-15) alone produced an increase in HR. The coinjections of Ang II with GAL(1-15) induced an increase in HR not significantly different from the tachycardia produced by each peptide. The presence of DuP 753 counteracted this response. GAL(1-29) alone elicited a transient vasopressor response that disappeared in the presence of Ang II. The coinjections of Ang II with GAL(1-29) and with DuP 753 restored the transient vasopressor effect produced by GAL(1-29). GAL(1-29) produced a slight but significant tachycardic effect that was not modified in the presence of Ang II. The presence of DuP 753 did not modify the tachycardic response produced by Ang II and GAL(1-29). These results give indications for the existence of a differential modulatory effect of Ang II with GAL(1-15) and GAL(1-29) on central blood pressure response that might be dependent on the activity of the angiotensin AT1 receptor subtype.  相似文献   

13.
Regional haemodynamic effects of DuP 753 were assessed in conscious unrestrained Brattleboro (i.e. vasopressin-deficient) rats, chronically instrumented with miniaturised pulsed Doppler flow probes and intravascular catheters. Responses to DuP 753 were assessed in water-replete animals and in animals following 14h water deprivation to render cardiovascular status dependent on the renin angiotensin system (RAS). In water-replete animals DuP 753 had little effect on mean arterial blood pressure, but there were dose-dependent tachycardias and increases in renal blood flow, associated with vasodilatations. There were also increases in mesenteric blood flow and vascular conductance, but these were not clearly dose-related; DuP 753 had no significant effects on hindquarters haemodynamics. In water-deprived animals DuP 753 caused dose-dependent hypotension, tachycardia, and renal and mesenteric vasodilatations; hindquarters vasodilatation was not dose-dependent. In both conditions, in the presence of DuP 753 (10 mg/kg), captopril had little additional effect. DuP 753 appears to be an extremely effective tool for assessing the role of the RAS in cardiovascular regulation.  相似文献   

14.
The present study investigated the role of angiotensin receptors (AT-R) in the survival and inflammatory response of astroglia upon hypoxic injury. Exposure of rat astroglial primary cultures (APC) to hypoxic conditions (HC) led to decreased viability of the cells and to a 3.5-fold increase in TNF-alpha release. AT-R type1 (AT1-R) antagonist losartan and its metabolite EXP3174 decrease the LDH release (by 36 ± 9%; 45 ± 6%) from APC under HC. Losartan diminished TNF-alpha release (by 40 ± 15%) and the number of TUNEL-cells by 204 ± 38% under HC, alone and together with angiotensin II (ATII), while EXP3174 was dependent on ATII for its effect on TNF-alpha. The AT2-R antagonist, PD123.319, did not influence the release of LDH and TNF-alpha under normoxic (NC) and HC. These data suggest that AT1-R may decrease the susceptibility of astrocytes to hypoxic injury and their propensity to release TNF-alpha. AT1-R antagonists may therefore be of therapeutic value during hypoxia-associated neurodegeneration.  相似文献   

15.
Angiotensin II stimulated the activity of phosphorylase a (EC50 approximately 3 nM). The effect of two receptor subtype-selective nonpeptide antagonists, DuP 753 (AII-1 selective) and PD123177 (AII-2 selective), was studied. It was observed that DuP 753 inhibited the effect of angiotensin II (IC50 100 nM) but in contrast, PD123177 was without effect on this action of the peptide hormone. Angiotensin II stimulated the labeling of phosphatidylinositol (resynthesis) and the release of inositol phosphates (breakdown). These effects of angiotensin II were blocked by DuP 753 but not by PD123177. The antagonists were without effect by themselves on these parameters. The results clearly indicate that angiotensin II receptors of the AII-1 subtype are coupled to phosphoinositide turnover and mediate phosphorylase activation in isolated rat hepatocytes.  相似文献   

16.
Incubation of cultured murine proximal tubular cells in serum-free media containing 450 mg/dl of glucose resulted in cellular hypertrophy as defined by an increase in cell size, total protein content, and synthesis after 72 h. 10 nM angiotensin II further increased this hypertrophy, but failed to have any effect on cells grown in 100 mg/dl glucose. This enhancement by angiotensin II was blocked by treatment with 1 microM of the angiotensin-receptor antagonist DuP 753. Although cells incubated in either glucose media exhibited similar high-affinity angiotensin II-receptors, the receptor density was elevated only in cells grown in the presence of high glucose. Stimulation of cells in high glucose for 60 min with 10 nM angiotensin II also reduced significantly intracellular cAMP concentrations. This was not the case for proximal tubular cells cultured in normal glucose. Our results indicate that high glucose and angiotensin II have additive effects on the induction of hypertrophy in renal tubular cells.  相似文献   

17.
The non-peptidic angiotensin II receptor subtype selective antagonists, DuP 753 and PD123177, were used to characterize angiotensin II receptor binding sites in the rat brain. Competitive receptor autoradiography with 125I-Sar1-Ile8 angiotensin II defined a regional distribution of binding sites that were sensitive to either DuP 753 (designated AII alpha subtype) or PD123177 (designated AII beta subtype). Whereas most brain nuclei could be assigned to a category containing a predominant subtype, a multiple receptor subtype analysis indicated that some regions are homogeneous, while others contain a mixture of both AII alpha and AII beta subtypes.  相似文献   

18.
The present investigation determined that native angiotensins II and III (ANG II and III) were equipotent as pressor agents when ICV infused in alert rats, whereas native angiotensin IV (ANG IV) was less potent. An analogue of each of these angiotensins was prepared with a hydroxyethylamine (HEA) amide bond replacement at the N-terminus, yielding additional resistance to degradation. These three angiotensin analogues, HEA-ANG II, HEA-ANG III, and HEA-ANG IV, were equivalent with respect to maximum elevation in pressor responses when ICV infused; and each evidenced significantly extended durations of effect compared with their respective native angiotensin. Comparing analogues, HEA-ANG II had a significantly longer effect compared with HEA-ANG III, and HEA-ANG IV, whereas the latter were equivalent. Pretreatment with the AT1 receptor subtype antagonist, Losartan (DuP753), blocked subsequent pressor responses to each of these analogues, suggesting that these responses were mediated by the AT1 receptor subtype. Pretreatment with the specific AT4 receptor subtype antagonist, Divalinal (HED 1291), failed to influence pressor responses induced by the subsequent infusion of these analogues. These results suggest an important role for Ang III, and perhaps ANG IV, in brain angiotensin pressor responses mediated by the AT1 receptor subtype.  相似文献   

19.
K Song  N Shiota  H Okunishi  M Miyazaki 《Life sciences》1992,51(18):PL165-PL170
Angiotensin II (Ang II) binding sites in adrenal glands of nephrectomized rats were investigated by in vitro autoradiography using 125I-[Sar1,Ile8]Ang II as ligands. Ang II binding site was increased to 161% in the cortex and decreased to 67% in the medulla 48 h after nephrectomy. In the medulla, the AT2 antagonist (PD123177, 5 microM) inhibited specific binding by 90% whereas the AT1 antagonist (DuP753, 5 microM) inhibited by only 10%. In contrast, in the cortex, neither DuP753 (5 microM) nor PD123177 (5 microM) substantially inhibited the binding. Binding in the presence of either the AT1 or AT2 antagonist was abolished by the simultaneous presence of both antagonists. These results suggest the presence of a new Ang II binding site with unique pharmacological properties and differing from currently known subtypes of Ang II receptors, in the adrenal cortex after nephrectomy.  相似文献   

20.
To assess the characteristics of blockade induced by 1-Sar, 8-Ala angiotensin II (P113) in the rat, dose-response relationships were established for angiotensin II and blood pressure, cardiac output and renal blood flow (measured with microspheres) and calculated total peripheral resistance. P113 infused at 1.0 μg/kg/min reduced renal and systemic vascular responses to angiotensin II, but did not modify the pressor response because of compensatory increase in cardiac output. Ganglionic blockade (pentolinium tartrate 2.5 mg) uncovered a significant influence of P113 at 1.0 μg/kg/ min on pressor responses to angiotensin II. P113 at 10 μg/kg/min totally prevented the pressor and renal vascular response to 1.0 μg/kg/min of angiotensin II. P113 at 10 and 100 μg/kg/min did not influence renal blood flow, cardiac output or total peripheral resistance, and had only a transient, small influence on blood pressure. P113 did not modify the renal or systemic vascular response to norepinephrine. The failure of P113 to influence renal blood flow in the rat and the relative insensitivity of the renal vasculature to angiotensin II suggest that the vascular receptor for angiotensin II in the rat differs from that in other species including the dog, rabbit and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号