首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

2.
3.
Mutant p53 proteins not only lose their tumor-suppressor function but some acquire oncogenic gain of function (GOF). The published mutp53 knock-in (KI) alleles (R172H, R270H, R248W) manifest GOF by broader tumor spectrum and more metastasis compared with the p53-null allele, but do not shorten survival. However, whether GOF also occurs with other mutations and whether they are all biologically equal is unknown. To answer this, we created novel humanized mutp53 KI mice harboring the hot spot alleles R248Q and G245S. Intriguingly, their impact was very different. Compared with p53-null mice, R248Q/− mice had accelerated onset of all tumor types and shorter survival, thus unprecedented strong GOF. In contrast, G245S/− mice were similar to null mice in tumor latency and survival. This was associated with a twofold higher T-lymphoma proliferation in R248Q/− mice compared with G245S/− and null mice. Moreover, R248Q/− hematopoietic and mesenchymal stem cells were expanded relative to G245S/− and null mice, the first indication that GOF also acts by perturbing pretumorous progenitor pools. Importantly, these models closely mirror Li–Fraumeni patients who show higher tumor numbers, accelerated onset and shorter tumor-free survival by 10.5 years when harboring codon R248Q mutations as compared with Li–Fraumeni patients with codon G245S mutations or p53 deletions/loss. Conversely, both KI alleles caused a modest broadening of tumor spectrum with enhanced Akt signaling compared with null mice. These models are the first in vivo proof for differential oncogenic strength among p53 GOF alleles, with genotype–phenotype correlations borne out in humans.  相似文献   

4.
Li-Fraumeni syndrome is a rare autosomal, dominant trait of diverse types of cancers in children and young adults, with a predominance of soft tissue sarcomas, osteosarcomas, brain tumours, adrenocortical and breast carcinomas, as well as leukaemias. We present a family with an unusual cancer history fulfilling the criteria of Li-Fraumeni syndrome. Mutational analysis of the p53 gene in constitutional DNA of several affected members of the family did not show any germline p53 defect. Cytogenetic studies did not reveal any structural aberrations.  相似文献   

5.
Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome.   总被引:4,自引:0,他引:4       下载免费PDF全文
Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 15 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that approximately 50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The p53 alterations frequently found in human tumors are missense mutations in the DNA binding domain. These p53 mutations have been shown to have gain-of-function or dominant negative properties in multiple experiments. The consequences of these p53 mutations at physiological levels on the development of a tumor were unclear. Using mouse models, three recent papers have shed light on the mechanisms of mutant p53 and its family members, p63 and p73, in tumorigenesis. Interestingly, the p53 point mutant mice had a similar phenotype to p53 family compound mutant mice suggesting that there is an interplay between the p53 family members in tumorigenesis and Li-Fraumeni syndrome.  相似文献   

7.

Background

Intra-peritoneal (i.p.) chemotherapy is an encouraging treatment option for ovarian cancer with peritoneum involvement in addition with intravenous (i.v.) chemotherapy. Intra-operative i.p. chemotherapy is an interesting method of administration by enhancing the diffusion of chemotherapy. This study had assessed the feasibility of intra-operative i.p. chemotherapy in patients with peritoneal carcinoma of ovarian cancer.

Methods

From January 2003 to February 2006, 47 patients with stage III ovarian cancer were treated with standard paclitaxel carboplatin intravenous chemotherapy and debulking surgery with intra-operative i.p. chemotherapy. After optimal cytoreductive surgery, defined by no unresectable residual disease > 1 cm, i.p. chemotherapy was performed during surgery. The peritoneal cavity was filled by 3 litres of isotonic saline pre-heated at 37 degrees and 90 mg of cisplatin. The sequence was repeated twice during 2 hours based on previous published studies which optimized the cisplatin dosage and exposure duration. Optimal diffusion was obtained by stirring by hands during the 2 hours.

Results

Median age was 59.6 years. No severe haematological or non-haematological toxicity induced by intra operative i.p. chemotherapy was reported. No patient died due to the complications of surgery or the i.p. chemotherapy. No neurotoxicity occurred, and one patients had renal impairment.

Conclusion

This study demonstrates the feasibility of intra-operative i.p. chemotherapy with cisplatin after optimal resection of peritoneal tumor nodules. Further randomized trials are planned to investigate the clinical benefit of this therapeutic modality.  相似文献   

8.
9.
Normal cells have a strictly limited growth potential and senesce after a defined number of population doublings (PDs). In contrast, tumor cells often exhibit an apparently unlimited proliferative potential and are termed immortalized. Although spontaneous immortalization of normal human cells in vitro is an extremely rare event, we observed this in fibroblasts from an affected member of a Li-Fraumeni syndrome kindred. The fibroblasts were heterozygous for a p53 mutation and underwent senescence as expected at PD 40. In four separate senescent cultures (A to D), there were cells that eventually recommenced proliferation. This was associated with aneuploidy in all four cultures and either loss (cultures A, C, and D) or mutation (culture B) of the wild-type (wt) p53 allele. Loss of wt p53 function was insufficient for immortalization, since cultures A, B, and D subsequently entered crisis from which they did not escape. Culture C has continued proliferating beyond 400 PDs and thus appears to be immortalized. In contrast to the other cultures, the immortalized cells have no detectable p16INK4 protein. A culture that had a limited extension of proliferative potential exhibited a progressive decrease in telomere length with increasing PD. In the culture that subsequently became immortalized, the same trend occurred until PD 73, after which there was a significant increase in the amount of telomeric DNA, despite the absence of telomerase activity. Immortalization of these cells thus appears to be associated with loss of wt p53 and p16INK4 expression and a novel mechanism for the elongation of telomeres.  相似文献   

10.
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.  相似文献   

11.
p53 mutation heterogeneity in cancer   总被引:13,自引:0,他引:13  
The p53 gene is inactivated in about 50% of human cancers and the p53 protein is an essential component of the cell response induced by genotoxic stresses such as those generated by radiotherapy or chemotherapy. It is therefore highly likely that these alterations are an important component in tumor resistance to therapy. The particular characteristics of these alterations, 80% of which are missense mutations leading to functionally heterogeneous proteins, make p53 a unique gene in the class of tumor suppressor genes. A considerable number of mutant p53 proteins probably have an oncogenic activity per se and therefore actively participate in cell transformation. The fact that the apoptotic and antiproliferative functions of p53 can be dissociated in certain mutants also suggests another level of complexity in the relationships between p53 inactivation and neoplasia.  相似文献   

12.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NF-kB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.  相似文献   

13.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NFκB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.Key words: p53, polymorphism, apoptosis, codon 72, NFκB  相似文献   

14.
RecA in Escherichia coli and its homolog, ScRad51 in Saccharomyces cerevisiae, are known to be essential for recombinational repair. The homolog of RecA and ScRad51 in mice, MmRad51, was mutated to determine its function. Mutant embryos arrested early during development. A decrease in cell proliferation, followed by programmed cell death and chromosome loss, was observed. Radiation sensitivity was demonstrated in trophectoderm-derived cells. Interestingly, embryonic development progressed further in a p53 null background; however, fibroblasts derived from double-mutant embryos failed to proliferate in tissue culture.  相似文献   

15.
16.
Comment on: Wei QX, et al. Cell Cycle 2011; 10:1261-70.  相似文献   

17.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

18.
Regulation of p53 function   总被引:11,自引:0,他引:11  
  相似文献   

19.
We have generated a mouse model for hepatocellular carcinoma using somatic delivery of oncogene-bearing avian retroviral vectors to the liver cells of mice expressing the viral receptor TVA under the control of the albumin gene promoter (Alb-TVA mice). Viruses encoding mouse polyoma virus middle T antigen (PyMT) induced tumors, which can be visualized with magnetic resonance imaging, in 65% of TVA-positive animals. While these tumors can exceed 10 mm in diameter, they do not invade locally or metastasize to the lungs. Delivery of PyMT-expressing viruses to Alb-TVA mice lacking an intact p53 gene does not increase tumor incidence. However, the resulting tumors are poorly differentiated, invasive, and metastatic to the lungs. Gene expression microarrays identified over 100 genes that are differentially expressed between tumors found in p53 wild-type and p53 null mice. Some of these genes, such as cathepsin E and Igf2, have been previously implicated in tumor cell migration and invasion. Tumors induced in p53 null, TVA transgenic mice by PyMT mutants with changes in specific tyrosine residues fail to form metastases, indicating that metastasis is dependent on both the oncogene and the absence of p53.  相似文献   

20.
Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号