首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether all-trans retinoic acid (RA) enhances compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 4 mo, the remaining lung was fixed by tracheal instillation of fixatives at a constant airway pressure for detailed morphometric analysis. After RA treatment compared with placebo, lung volume was slightly but not significantly lower. Volume density of septum to lung was 37% higher because of a 50 and 25% higher volume density of capillary and septal tissue, respectively. Mean septal thickness was 27% higher. Absolute volumes of endothelial cells and capillary blood were 31-37% higher, whereas epithelial and interstitial volumes were not different between groups. Absolute alveolar-capillary surface areas did not differ between groups, and alveolar septal surface-to-volume ratio was 20% lower in RA-treated animals. RA treatment exaggerated interlobar differences in morphometric indexes and caused alveolar capillary morphology to revert to a more immature state. Thus RA treatment during early post-R-PNX adaptation preferentially enhanced alveolar capillary and endothelial cell volumes consistent with formation of new capillaries, but the associated septal distortion precluded a corresponding increase in gas-exchange surface or morphometric estimates of lung diffusing capacity.  相似文献   

2.
We showed previously that removing 55-58% of the lung by right pneumonectomy (R-PNX) in adult dogs triggers compensatory growth of the remaining lung, but removing 42-45% of the lung by left PNX (L-PNX) does not. We also showed that, following R-PNX, supplemental all-trans retinoic acid (RA) selectively enhances alveolar capillary endothelial cell volume (Yan X, Bellotto DJ, Foster DJ, Johnson RL, Jr., Hagler HH, Estrera AS, and Hsia CC. J Appl Physiol 96: 1080-1089, 2004). We hypothesized that RA supplementation might enhance compensation following L-PNX and tested this hypothesis by administering RA (2 mg.kg(-1).day(-1), 4 days/wk) or placebo orally to litter-matched adult foxhounds for 4 mo following L-PNX. Resting lung function was measured under anesthesia. Air and tissue volumes of the remaining lung were assessed by high-resolution computed tomography scan and by detailed postmortem morphometric analysis of the fixed lung. There was no significant difference in resting lung function, lung volume, alveolar structure, or septal ultrastructure between RA and placebo treatment groups. We conclude that RA supplementation does not induce post-PNX compensatory lung growth in the absence of existing cellular growth activities initiated by other primary signals.  相似文献   

3.
Alveolarization is impaired in rats treated with dexamethasone (Dex) on postnatal days 4-13, but concomitant treatment with all-trans retinoic acid (RA) increases alveolar number. To determine whether morphological changes induced by Dex and/or RA predict changes in lung function at 1 mo, we assessed resting breathing parameters, dynamic compliance, ventilation required to maintain O(2) saturation at > or = 90%, and pressure-volume curves of air-filled lungs. During resting breathing, mean tidal volume per gram was greater in Dex + RA-treated rats than in controls (P < 0.05). Dynamic compliance was also greater in Dex- and Dex + RA-treated rats than in controls or RA-treated rats (P < 0.02). In Dex- and Dex + RA-treated rats, we observed increased hysteresis ratios (P < or = 0.006), air trapping (P < 0.05), and lung volumes at 5 and 13.5 cmH(2)O pressure (P < 0.001) and decreased elastic recoil (P < 0.007). The effect of Dex on elastic recoil was greater in female than in male rats (P = 0.006). Despite impaired septation, O(2) saturation was not compromised in Dex- or Dex + RA-treated rats. Thus lung function changes induced by Dex treatment during alveolarization were not prevented by concomitant treatment with RA.  相似文献   

4.
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery.  相似文献   

5.
In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.  相似文献   

6.
To determine the role of mediastinal shift after pneumonectomy (PNX) on compensatory responses, we performed right PNX in adult dogs and replaced the resected lung with a custom-shaped inflatable silicone prosthesis. Prosthesis was inflated (Inf) to prevent mediastinal shift, or deflated (Def), allowing mediastinal shift to occur. Thoracic, lung air, and tissue volumes were measured by computerized tomography scan. Lung diffusing capacities for carbon monoxide (DL(CO)) and its components, membrane diffusing capacity for carbon monoxide (Dm(CO)) and capillary blood volume (Vc), were measured at rest and during exercise by a rebreathing technique. In the Inf group, lung air volume was significantly smaller than in Def group; however, the lung became elongated and expanded by 20% via caudal displacement of the left hemidiaphragm. Consequently, rib cage volume was similar, but total thoracic volume was higher in the Inf group. Extravascular septal tissue volume was not different between groups. At a given pulmonary blood flow, DL(CO) and Dm(CO) were significantly lower in the Inf group, but Vc was similar. In one dog, delayed mediastinal shift occurred 9 mo after PNX; both lung volume and DL(CO) progressively increased over the subsequent 3 mo. We conclude that preventing mediastinal shift after PNX impairs recruitment of diffusing capacity but does not abolish expansion of the remaining lung or the compensatory increase in extravascular septal tissue volume.  相似文献   

7.
Measurements of nitric oxide (NO) pulmonary diffusing capacity (DL(NO)) multiplied by alveolar NO partial pressure (PA(NO)) provide values for alveolar NO production (VA(NO)). We evaluated applying a rapidly responding chemiluminescent NO analyzer to measure DL(NO) during a single, constant exhalation (Dex(NO)) or by rebreathing (Drb(NO)). With the use of an initial inspiration of 5-10 parts/million of NO with a correction for the measured NO back pressure, Dex(NO) in nine healthy subjects equaled 125 +/- 29 (SD) ml x min(-1) x mmHg(-1) and Drb(NO) equaled 122 +/- 26 ml x min(-1) x mmHg(-1). These values were 4.7 +/- 0.6 and 4.6 +/- 0.6 times greater, respectively, than the subject's single-breath carbon monoxide diffusing capacity (Dsb(CO)). Coefficients of variation were similar to previously reported breath-holding, single-breath measurements of Dsb(CO). PA(NO) measured in seven of the subjects equaled 1.8 +/- 0.7 mmHg x 10(-6) and resulted in VA(NO) of 0.21 +/- 0.06 microl/min using Dex(NO) and 0.20 +/- 0.6 microl/min with Drb(NO). Dex(NO) remained constant at end-expiratory oxygen tensions varied from 42 to 682 Torr. Decreases in lung volume resulted in falls of Dex(NO) and Drb(NO) similar to the reported effect of volume changes on Dsb(CO). These data show that rapidly responding chemiluminescent NO analyzers provide reproducible measurements of DL(NO) using single exhalations or rebreathing suitable for measuring VA(NO).  相似文献   

8.
In adult dogs following right pneumonectomy (PNX) and receiving all-trans-retinoic acid (RA) supplementation for 4 mo, we found modestly enhanced alveolar-capillary growth in the remaining lung without enhanced resting lung function (J Appl Physiol 96: 1080-1089 and 96: 1090-1096, 2004). Since alveolar remodeling progresses beyond this period and the lipid-soluble RA continues to be released from tissue stores, we hypothesized that RA supplementation may exert additional long-term effects. To examine this issue, adult male litter-matched foxhounds underwent right PNX followed by RA supplementation (2 mg/kg po 4 days/wk, n = 6) or placebo (n = 4) for 4 mo. Cardiopulmonary function was measured at rest and during exercise at 4 and 20 mo post-PNX. The remaining lung was fixed under a constant airway pressure for morphometric analysis. Comparing RA treatment to placebo controls, there were no differences in aerobic capacity, cardiopulmonary function, or lung volume at rest or exercise. Alveolar-capillary basal lamina thickness and mean harmonic thickness of air-blood diffusion barrier were 23-29% higher. The prevalence of double-capillary profiles remained 82% higher. Absolute volumes of septal interstitium, collagen fibers, cells, and matrix were 32% higher; the relative volumes of other septal components and alveolar-capillary surface areas expressed as ratios to control values were up to 24% higher. Thus RA supplementation following right PNX modestly and persistently enhanced long-term alveolar-capillary structural dimensions, especially the deposition of interstitial and connective tissue elements, in such a way that caused a net increase in barrier resistance to diffusion without improving lung mechanics or gas exchange.  相似文献   

9.
Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (Vo(2 max)). The diffusing capacities for nitric oxide (DL(NO)) and carbon monoxide (DL(CO)) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DL(CO) (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DL(CO), DL(NO), and Dm but a slight decrease in Vc. Exercise at altitude decreased DL(NO) and Dm. Sitaxsentan intake improved Vo(2 max) together with an increase in resting and postexercise DL(NO) and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DL(NO). Both DL(CO) and DL(NO) were correlated to Vo(2 max) at sea level (r = 0.41-0.42, P < 0.1) and more so at altitude (r = 0.56-0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.  相似文献   

10.
A novel framework of circulatory equilibrium was developed by extending Guyton's original concept. In this framework, venous return (CO(V)) for a given stressed volume (V) was characterized by a flat surface as a function of right atrial pressure (P(RA)) and left atrial pressure (P(LA)) as follows: CO(V) = V/W - G(S)P(RA) - G(P)P(LA), where W, G(S), and G(P) denote linear parameters. In seven dogs under total heart bypass, CO(V), P(RA), P(LA), and V were varied to determine the three parameters in each animal with use of multivariate analysis. The coefficient of determination (r(2) = 0.92-0.99) indicated the flatness of the venous return surface. The averaged surface was CO(V) = V/0.129 - 19.61P(RA) - 3.49P(LA). To examine the invariability of the surface parameters among animals, we predicted the circulatory equilibrium in response to changes in stressed volume in another 12 dogs under normal and heart failure conditions. This was achieved by equating the standard surface with the individually measured cardiac output (CO) curve. In this way, we could predict CO [y = 0.90x + 5.6, r(2) = 0.95, standard error of the estimate (SEE) = 8.7 ml.min(-1).kg(-1)], P(RA) (y = 0.96x, r(2) = 0.98, SEE = 0.2 mmHg), and P(LA) (y = 0.89x + 0.5, r(2) = 0.98, SEE = 0.8 mmHg) reasonably well. We conclude that the venous return surface accurately represents the venous return properties of the systemic and pulmonary circulations. The characteristics of the venous return surface are invariable enough among animals, making it possible to predict circulatory equilibrium, even if those characteristics are unknown in individual animals.  相似文献   

11.
Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.  相似文献   

12.
Retinoids, including retinol and retinoic acid (RA) derivatives, have been shown to be involved in the processes of lung development as well as of lung repair after injury. Recently, we have provided evidence that RA could stimulate proliferation of lung alveolar type 2 epithelial cells (E. Nabeyrat, V. Besnard, S. Corroyer, V. Cazals, and A. Clement. Am. J. Physiol. Lung Cell. Mol. Physiol. 275: L71-L79, 1998). To gain some insight into the mechanisms involved in the mitogenic action of RA, we focused in the present study on the effects of RA on the expression of G(1) phase cyclins and their cell cycle-dependent kinases (Cdks). Experiments were performed with serum-deprived cells cultured in the absence and presence of RA. The results showed no effects of RA on the expression of either cyclins or Cdks. In contrast, RA treatment was found to prevent the decrease in cyclin E-Cdk2 activity observed when cells were growth arrested by serum deprivation. The observation that changes in cyclin E-Cdk2 activity were not associated with modifications in the amount of complexes formed led to the suggestion that the Cdk inhibitory protein (CKI) was involved. Study of the CKI p21(CIP1) revealed marked differences in its expression in the absence and presence of RA, with a dramatic downregulation observed in RA-treated cells. Interestingly, immunoprecipitation experiments provided evidence that the decreased levels of p21(CIP1) were associated with a reduced interaction of this CKI with cyclin E-Cdk2 complexes. These data together with previous results obtained in various situations of type 2 cell growth arrest emphasize the role of p21(CIP1) in the control of lung alveolar epithelial cell proliferation.  相似文献   

13.
Postnatal developmental stages of lung parenchyma in rhesus monkeys is about one-third that of humans. Alveoli in humans are reported to be formed up to 8 yr of age. We used design-based stereological methods to estimate the number of alveoli (N(alv)) in male and female rhesus monkeys over the first 7 yr of life. Twenty-six rhesus monkeys (13 males ranging in age from 4 to 1,920 days and lung volumes from 41.7 to 602 cm(3), 13 females ranging in age from 22 to 2,675 days and lung volumes from 43.5 to 380 cm(3)) were necropsied and lungs fixed, isotropically oriented, fractionated, sampled, embedded, and sectioned for alveolar counting. Parenchymal, alveolar, alveolar duct core air, and interalveolar septal tissue volumes increased rapidly during the first 2 yr with slowed growth from 2 to 7 yr. The rate of change was greater in males than females. N(alv) also showed consistent growth throughout the study, with increases in N(alv) best predicted by increases in lung volume. However, mean alveolar volume showed little relationship with age, lung volume, or body weight but was larger in females and showed a greater size distribution than in males. Alveoli increase in number but not volume throughout postnatal development in rhesus monkeys.  相似文献   

14.
Cardiopulmonary function of dogs with plutonium-induced chronic lung injury   总被引:1,自引:0,他引:1  
Beagle dogs had signs of restrictive lung disease 1 to 5 years after exposure by inhalation to 239PuO2 aerosols. The 239PuO2 aerosols were monodisperse with activity median aerodynamic diameters of 0.75, 1.5, or 3.0 microns. The plutonium particles produced protracted alpha irradiation of the lungs. Ten dogs had specific initial pulmonary burdens (IPB) of 330 to 4,100 kBq of 239PuO2/kg of body mass. The average onset time of clinical signs of lung injury was 3 years after exposure; the average time from the onset of signs until cardiorespiratory function evaluation was 5.5 years. A second group of 10 dogs had IPB of 110 to 2000 kBq of 239Pu/kg of body mass but no signs of lung injury. A third group of 10 dogs, not exposed to 239Pu, were matched for age and sex. Cardiopulmonary function tests were performed. Only the dogs in group I with signs of lung injury had a mild respiratory function disorder consisting of smaller lung volumes, reduced compliance, increased respiratory frequency and minute volume, and reduced carbon monoxide diffusing capacity. Cardiac function of all three groups was similar. These findings indicate that alpha irradiation of the lungs of man could produce restrictive lung disease at long times after initial exposure.  相似文献   

15.
To examine the effects of mechanical lung strain on regenerative growth of alveolar septal tissue after pneumonectomy (PNX), we replaced the right lungs of adult dogs with a custom-shaped inflatable silicone prosthesis. The prosthesis was either inflated (Inf) to maintain the mediastinum at the midline or deflated to allow mediastinal shift. The animals were euthanized approximately 15 mo later, and the lungs were fixed at a constant distending pressure. With the Inf prostheses, lung expansion, alveolar septal tissue volumes, surface areas, and diffusing capacity of the tissue-plasma barrier were significantly lower than with the deflated prostheses; the expected post-PNX tissue responses were impaired by 30-60%. Capillary blood volume was significantly higher with Inf prostheses, consistent with microvascular congestion. Measurements in the Inf group remained consistently and significantly higher than those expected for a normal left lung, indicating persistence of partial compensation. In one dog, delayed deflation of the prosthesis 9-10 mo after PNX led to vigorous lung expansion and septal tissue growth, particularly of type II epithelial cells. We conclude that mechanical lung strain is a major signal for regenerative lung growth; however, other signals are also implicated, accounting for a significant fraction of the compensatory response to PNX.  相似文献   

16.
Pneumonectomy results in rapid compensatory growth of the remaining lung and also leads to increased flow and shear stress, which are known to stimulate endothelial nitric oxide synthase (eNOS). Nitric oxide is an essential mediator of vascular endothelial growth factor-induced angiogenesis, which should necessarily occur during compensatory lung growth. Thus our hypothesis is that eNOS is critical for compensatory lung growth. To test this, left pneumonectomy was performed in eNOS-deficient mice (eNOS-/-), and compensatory growth of the right lung was characterized throughout 14 days postpneumonectomy and compared with wild-type pneumonectomy and sham controls. Compensatory lung growth was severely impaired in eNOS-/- mice, as demonstrated by significant reductions in lung weight index, lung volume index, and volume of respiratory region. Also, pneumonectomy-induced increases in alveolar surface density and cell proliferation were prevented in eNOS-/- mice, indicating that eNOS plays a role in alveolar hyperplasia. Compensatory lung growth was also impaired in wild-type mice treated with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Together, these results indicate that eNOS is critical for compensatory lung growth.  相似文献   

17.
Using a rapidly responding nitric oxide (NO) analyzer, we measured the steady-state NO diffusing capacity (DL(NO)) from end-tidal NO. The diffusing capacity of the alveolar capillary membrane and pulmonary capillary blood volume were calculated from the steady-state diffusing capacity for CO (measured simultaneously) and the specific transfer conductance of blood per milliliter for NO and for CO. Nine men were studied bicycling at an average O(2) consumption of 1.3 +/- 0.2 l/min (mean +/- SD). DL(NO) was 202.7 +/- 71.2 ml. min(-1). Torr(-1) and steady-state diffusing capacity for CO, calculated from end-tidal (assumed alveolar) CO(2), mixed expired CO(2), and mixed expired CO, was 46.9 +/- 12.8 ml. min(-1). Torr(-1). NO dead space = (VT x FE(NO) - VT x FA(NO))/(FI(NO) - FA(NO)) = 209 +/- 88 ml, where VT is tidal volume and FE(NO), FI(NO), and FA(NO) are mixed exhaled, inhaled, and alveolar NO concentrations, respectively. We used the Bohr equation to estimate CO(2) dead space from mixed exhaled and end-tidal (assumed alveolar) CO(2) = 430 +/- 136 ml. Predicted anatomic dead space = 199 +/- 22 ml. Membrane diffusing capacity was 333 and 166 ml. min(-1). Torr(-1) for NO and CO, respectively, and pulmonary capillary blood volume was 140 ml. Inhalation of repeated breaths of NO over 80 s did not alter DL(NO) at the concentrations used.  相似文献   

18.
The beta2-adrenergic receptors (beta2AR) play an important role in lung fluid regulation. Previous research has suggested that subjects homozygous for arginine at amino acid 16 of the beta2AR (Arg16) may have attenuated receptor function relative to subjects homozygous for glycine at the same amino acid (Gly16). We sought to determine if the Arg16Gly polymorphism of the beta2AR influenced lung fluid balance in response to rapid saline infusion. We hypothesized that subjects homozygous for Arg at amino acid 16 (n=14) would have greater lung fluid accumulation compared with those homozygous for Gly (n=15) following a rapid intravenous infusion of isotonic saline (30 ml/kg over 17 min). Changes in lung fluid were determined using measures of lung density and tissue volume (computerized tomography imaging) and measures of pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (DM, determined from the simultaneous assessment of the diffusing capacities of the lungs for carbon monoxide and nitric oxide). The saline infusion resulted in elevated catecholamines in both genotype groups (Arg16 283+/-117% vs. Gly16 252+/-118%, P>0.05). The Arg16 group had a larger decrease in DM and increase in lung tissue volume and lung water after saline infusion relative to the Gly16 group (DM -13+/-14 vs. 0+/-26%, P<0.05; lung tissue volume 13+/-11 vs. 3+/-11% and lung water +90+/-66 vs. +48+/-144 ml, P=0.10, P<0.05, for Arg vs. Gly16, respectively, means+/-SD). These data suggest that subjects homozygous for Arg at amino acid 16 of the beta2AR have a greater susceptibility for lung fluid accumulation relative to subjects homozygous for Gly at this position.  相似文献   

19.
The incretin glucagon-like peptide-1 (GLP-1), which is used to treat diabetes mellitus, delays gastric emptying by inhibiting vagal activity. GLP-1 also increases fasting and postprandial gastric volume in humans. On the basis of animal studies, we hypothesized that nitric oxide mediates the effects of GLP-1 on gastric volumes. To assess the effects of nitrergic blockade on GLP-1-induced gastric accommodation in humans, in this double-blind study, 31 healthy volunteers were randomized to placebo (i.e., saline), GLP-1, or the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate (L-NMMA; 4 mg.kg(-1) x h(-1)) alone or with GLP-1. Thereafter, 16 additional subjects were randomized to GLP-1 alone or together with a higher dose of L-NMMA (10 mg/kg bolus plus 8 mg.kg(-1).h(-1) infusion). Gastric volumes (fasting pre- and postdrug, postprandial postdrug) were measured by (99m)Tc-single-photon-emission computed tomography imaging. GLP-1 increased (P = 0.04) fasting gastric volume by 83 +/- 16 ml (vs. 17 +/- 11 ml for placebo) and augmented (P < or = 0.01) postprandial accommodation by 688 +/- 165 ml (vs. 542 +/- 29 ml for placebo). L-NMMA (low dose) alone did not affect fasting or postprandial gastric volume. L-NMMA (low dose) did not attenuate the effect of GLP-1 on gastric volumes. In contrast, L-NMMA (high dose) did not affect fasting volume but blunted GLP-1-mediated postprandial accommodation (postprandial change = 494 +/- 37 ml, P < or = 0.01 vs. GLP-1 alone). These data are consistent with the hypothesis that nitric oxide partly mediates the effects of GLP-1 on postprandial but not fasting gastric volumes in humans.  相似文献   

20.
Recent lung microstructural models describing interactions between alveolar surface tension (gamma) and forces in structural elements of the alveolar duct predict that the component of lung recoil pressure due to gamma (P gamma) is proportional to gamma/V1/3, where V is the total lung volume. This relation is tested against experimental data obtained from pressure-volume measurements of excised rabbit lungs with different constant values of gamma. It is found that for values of gamma less than approximately 18 dyn/cm the data generally agree with the model predictions. With higher values of gamma, a mismatch between the data and predictions first occurs at low and high volumes and then spreads over the entire volume range. The mismatch at the lower volumes coincides with the appearance of nonuniformities of lung expansion. The nonuniformities are characterized by a coexistence of under- and overexpanded regions of the parenchyma referred to as a mixture of phases. These nonuniformities, as well as a pressure-volume curve with a shape similar to the shape of measured curves, are predicted from an analysis of lung stability. Results of this work indicate that if the lung expands uniformly, P gamma proportional to gamma/V1/3 is a good approximation over a wide range of volumes. The stability analysis indicates that the equilibrium configurations of the lung parenchyma when gamma is independent of interfacial area and elevated above normal values are nonuniform states of expansion, characterizable as a mixture of phases. This result confirms that a dependence of gamma on surface area is normally required to achieve stable, uniform states of lung expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号