首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spleen contains numerous NK cells whose differentiation profile is characterized by a preponderance of mature elements located mainly in the red pulp. In contrast, lymph nodes (LNs) contain few NK cells and they are sited mostly in T cell zones and skewed toward immature developmental stages. We show that, in mice, naturally occurring CD4+ Foxp3+ regulatory T (Treg) cells are both necessary and sufficient to repress accumulation of NK cells in resting LNs. Moreover, we present evidence that Treg cells hamper generation of mature NK cells through short-range interactions with NK precursors. In turn, mature NK cells specifically regulate the amount of CD8alpha+ phenotypically immature dendritic cells present in LN T cell zones. We propose that the dominant influence of Treg cells on NK cell precursors and CD8alpha+ immature dendritic cells explains why "quiescent" LNs in the absence of infection function as privileged sites for induction and maintenance of tolerance to peripheral Ags.  相似文献   

2.

Background

The aim of this paper is to study the function of allogeneic and autologous NK cells against Dental Pulp Stem Cells (DPSCs) and Mesenchymal Stem Cells (MSCs) and to determine the function of NK cells in a three way interaction with monocytes and stem cells.

Methodology/Principal Findings

We demonstrate here that freshly isolated untreated or IL-2 treated NK cells are potent inducers of cell death in DPSCs and MSCs, and that anti-CD16 antibody which induces functional split anergy and apoptosis in NK cells inhibits NK cell mediated lysis of DPSCs and MSCs. Monocytes co-cultured with either DPSCs or MSCs decrease lysis of stem cells by untreated or IL-2 treated NK cells. Monocytes also prevent NK cell apoptosis thereby raising the overall survival and function of NK cells, DPSCs or MSCs. Both total population of monocytes and those depleted of CD16+ subsets were able to prevent NK cell mediated lysis of MSCs and DPSCs, and to trigger an increased secretion of IFN-γ by IL-2 treated NK cells. Protection of stem cells from NK cell mediated lysis was also seen when monocytes were sorted out from stem cells before they were added to NK cells. However, this effect was not specific to monocytes since the addition of T and B cells to stem cells also protected stem cells from NK cell mediated lysis. NK cells were found to lyse monocytes, as well as T and B cells.

Conclusion/Significance

By increasing the release of IFN-γ and decreasing the cytotoxic function of NK cells monocytes are able to shield stem cells from killing by the NK cells, resulting in an increased protection and differentiation of stem cells. More importantly studies reported in this paper indicate that anti-CD16 antibody can be used to prevent NK cell induced rejection of stem cells.  相似文献   

3.
Natural killer (NK) cells are a key component of the innate immune system, as they are able to detect microbe-infected cells, tumors as well as allogeneic cells, without specific sensitization. NK cell effector functions (cytotoxicity, cytokine secretion) are regulated by a wide array of inhibitory and activating receptors. MHC class I molecules are the ligands of most inhibitory receptors, while activating receptors recognize either pathogen-encoded molecules, or self-proteins whose expression is up-regulated upon microbial infection or tumor development. Upon integration of these negative and positive signals, Natural Killer cells can discriminate between healthy "self" (tolerance) and autologous cells undergoing different types of cellular stress or allogeneic cells (immunosurveillance). The knowledge of the different mechanisms of target cell recognition is thus crucial to dissect NK cell involvement in homeostatic and disease conditions as well as to develop novel alternative therapeutic approaches based on NK cell manipulation.  相似文献   

4.
Cytotoxicity not restricted by the major histocompatibility complex (MHC) is mediated by two distinct types of lymphocyte: natural killer (NK) cells and non-MHC-restricted cytotoxic T lymphocytes (CTL). These two types of cytotoxic lymphocytes can be distinguished by antigenic phenotype, function, and molecular genetic studies. In human peripheral blood, NK cells are identified by expression of the Leu-19 and/or CD16 cell surface antigens, and lack of CD3/T cell antigen receptor (Ti) complex expression (i.e., CD3-,Leu-19+). Peripheral blood non-MHC-restricted CTL express both CD3 and Leu-19 (i.e., CD3+, Leu-19+, referred to as Leu-19+ T cells). Both Leu-19+ T cells and NK cells lyse "NK-sensitive" hematopoietic tumor cell targets, such as K562, without deliberate immunization of the host. However, most "NK activity" in peripheral blood is mediated by NK cells, because they are usually more abundant and more efficient cytotoxic effectors than Leu-19+ T cells. The cytolytic activity of both NK cells and Leu-19+ T cells against hematopoietic targets was enhanced by recombinant interleukin 2 (rIL 2). NK cells, but not peripheral blood Leu-19+ T cells, were also capable of lysing solid tumor cell targets after short-term culture in rIL 2. Southern blot analysis of NK cells revealed that both the T cell antigen receptor beta-chain genes and the T cell-associated gamma genes were not rearranged, but were in germ-line configuration. These findings indicate that NK cells are distinct in lineage from T lymphocytes and do not use the T cell antigen receptor genes for target recognition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Early stages of viral infections are associated with local recruitment and activation of dendritic cells (DC) and NK cells. Although activated DC and NK cells are known to support each other's functions, it is less clear whether their local interaction in infected tissues can modulate the subsequent ability of migrating DC to induce T cell responses in draining lymph nodes. In this study, we report that NK cells are capable of inducing stable type 1-polarized "effector/memory" DC (DC1) that act as carriers of NK cell-derived helper signals for the development of type 1 immune responses. NK cell-induced DC1 show a strongly elevated ability to produce IL-12p70 after subsequent CD40 ligand stimulation. NK-induced DC1 prime naive CD4+ Th cells for high levels of IFN-gamma, but low IL-4 production, and demonstrate a strongly enhanced ability to induce Ag-specific CD8+ T cell responses. Resting NK cells display stringent activation requirements to perform this novel, DC-mediated, "helper" function. Although their interaction with K562 cells results in effective target cell killing, the induction of DC1 requires a second NK cell-activating signal. Such costimulatory signal can be provided by type I IFNs, common mediators of antiviral responses. Therefore, in addition to their cytolytic function, NK cells also have immunoregulatory activity, induced under more stringent conditions. The currently demonstrated helper activity of NK cells may support the development of Th1- and CTL-dominated type 1 immunity against intracellular pathogens and may have implications for cancer immunotherapy.  相似文献   

6.
A procedure using preparative free-flow high voltage electrophoresis is described for the fractionation of murine spleen and bone marrow cells so as to obtain cell subpopulations that are either enriched in or depleted of "natural killer" (NK) cells and "mitogen-induced cellular cytotoxicity" (MICC) effector cells. A nearly three fold enrichment in the NK and MICC activities of spleen cells was achieved. The enrichment in these cells could be further increased if the phagocytic cells were removed prior to electrophoresis. When bone marrow cells were fractionated a two and a half fold increase of NK activity, and a one and a half fold enrichment of MICC activity was achieved. In both cases, other fractions were nearly devoid of NK and MICC activity. The cell recovery after electrophoresis averages 70% of the cells applied, and at least 90% of these cells were viable. MICC and NK effector cells could not be separated to a useful extent electrophoretically but were found to be separable using Sephadex C-10 gel filtration columns. The MICC but not the NK cells were retained on these columns.  相似文献   

7.
S Mahmood  N Kanwar  J Tran  ML Zhang  SK Kung 《PloS one》2012,7(8):e44244
Balance of signals generated from the engaged activating and inhibitory surface receptors regulates mature NK cell activities. The inhibitory receptors signal through immunoreceptor tyrosine based inhibitory motifs (ITIM), and recruit phosphatases such as SHP-1 to inhibit NK cell activation. To directly examine the importance of SHP-1 in regulating activities and cell fate of mature NK cells, we used our established lentiviral-based engineering protocol to knock down the SHP-1 protein expression in primary C57BL/6NCrl cells. Gene silencing of the SHP-1 in primary NK cells abrogated the ability of ITIM-containing NK inhibitory receptors to suppress the activation signals induced by NK1.1 activating receptors. We followed the fates of stably transduced SHP-1 silenced primary NK cells over a longer period of time in IL-2 containing cultures. We observed an impaired IL-2 induced proliferation in the SHP-1 knockdown NK cells. More interestingly, these "de-regulated" SHP-1 knockdown NK cells mediated specific self-killing in a real-time live cell microscopic imaging system we developed to study NK cell cytotoxicity in vitro. Selective target recognition of the SHP-1 knockdown NK cells revealed also possible involvement of the SHP-1 phosphatase in regulating other NK functions in mature NK cells.  相似文献   

8.
Natural killer (NK) cell recognition and formation of a conjugate with target cells, followed by intracellular signal pathway activation and degradation of cytolytic granules, are essential for NK cell cytotoxicity. In this study, NK92 cells were used to investigate synapse formation and subsequent signaling after binding to the target cell. The binding rate of the NK92-target cell was associated with NK92 cell cytotoxicity. Confocal results showed that adhesion molecules, LFA-1 (CD11a) and CD2, accumulated at the interface of the NK92-K562 contact. Ligation with K562 cells activated the Erk1/2 signal pathway of NK92 cells. The blocking of the NK-target conjugate by EDTA or anti-CD11a or/and anti-CD2 antibody decreased the phosphorylation of Erk1/2 and NK cell cytotoxicity. Inhibition of Erk1/2 phosphorylation by the chemical inhibitor U0126 suppressed the cytolytic activity of NK92 cells, but had no effect on NK-target conjugate formation. Thus, conjugate formation of the NK92-target cell was prerequisite to NK cell activation, and subsequent signal transduction was also required for NK cell cytotoxicity.Natural killer (NK)3 cells are a population of granular lymphocytes that play an essential role in cellular immune defense against a variety of tumor cells, virus-infected cells, or allogeneic cells (13). NK cells are critical for host immunity for their ability for a quick cytotoxic response and to produce a wide variety of cytokines and chemokines to modulate other cellular components of the immune system (4, 5). NK cells express two functional types of receptors: activating and inhibitory receptors (68). The effector function of NK cells is regulated by a balance between opposite signals delivered by the MHC class I-specific inhibitory receptors and the activating receptors responsible for NK cell triggering to permit elimination of pathogens (6).NK cell recognition and binding to target cells, as well as formation of conjugates, are essential for NK cell cytotoxicity (9). Conjugate formation by the NK cell with a target cell is a process mediated by integrins and immunoglobulin superfamily molecules including CD2, CD11a (LFA-1), CD11b, CD11c, and CD28, which also participate in the promotion of NK cell function (1012). They participate in adhesion between the NK cell and the target cell, and blocking antibodies suppress the adhesion. In addition to possessing an adhesive role, ligation of CD2 induces kinase function and lipid raft polarization (11), whereas ligation of CD11a, CD11b, and CD11c induces phosphorylation-dependent NK cell activation (13, 14). The interaction of specific cell surface receptors with their ligands on a target cell at their interface forms specific activating NK cell immunological synapses and leads to the activation of a cascade of intracellular signals, resulting in Ca2+ flux, polarization of granules, and subsequent release of lytic molecules (13, 15, 16). The Erk1/2 (p44/42 mitogen-activated protein kinase) pathway plays an important role in NK cell cytotoxicity (1721). Inhibition of Erk1/2 might block NK cell cytolytic activity by compromising the release of perforin (22). In this study, the roles of adhesion molecules in NK92-target cell conjugate formation of immunological synapse, and subsequent Erk1/2 activation in NK92 cells was investigated.  相似文献   

9.
Resting human NK cells require a two-stage activation process that we have previously described as "priming" and "triggering." NK-sensitive tumor cells provide both priming and triggering signals. NK-resistant tumors evade lysis, mostly by failure to prime; however, we recently reported a tumor cell line (CTV-1) that primes resting NK cells but fails to trigger lysis. In this article, we report two additional leukemia cell lines that prime NK cells but are resistant to lysis. Tumor-mediated NK priming is via CD2 binding to a ligand within CD15 on the tumor cell. NK-resistant RAJI cells became susceptible to NK lysis following transfection and expression of CD15. Blockade of CD15 on K562 cells or on CD15(+) RAJI cells significantly inhibited lysis, as did blockade of CD2 on resting NK cells. NK priming via CD2 induced CD16 shedding, releasing CD3ζ to the CD2, leading to its phosphorylation and the subsequent phosphorylation of linker for activation of T cells and STAT-5 and synthesis of IFN-γ. Blockade of C-type lectin receptors significantly suppressed the tumor-mediated priming of NK cells, whereas blockade of Ig-superfamily-like receptors had no effect at the NK-priming stage. Tumor priming of resting NK cells was irrespective of HLA expression, and blockade of HLA-killer Ig-like receptor interactions did not influence the incidence or degree of priming. However, CD15-CD2 interactions were critical for NK priming and were required, even in the absence of HLA-mediated NK inhibition. Tumor-mediated priming led to a sustained primed state, and the activated NK cells retained the ability to lyse NK-resistant tumors, even after cryopreservation.  相似文献   

10.
Influenza is an acute respiratory viral disease that is transmitted in the first few days of infection. Evasion of host innate immune defenses, including natural killer (NK) cells, is important for the virus''s success as a pathogen of humans and other animals. NK cells encounter influenza viruses within the microenvironment of infected cells and are important for host innate immunity during influenza virus infection. It is therefore important to investigate the direct effects of influenza virus on NK cells. In this study, we demonstrated for the first time that influenza virus directly infects and replicates in primary human NK cells. Viral entry into NK cells was mediated by both clathrin- and caveolin-dependent endocytosis rather than through macropinocytosis and was dependent on the sialic acids on cell surfaces. In addition, influenza virus infection induced a marked apoptosis of NK cells. Our findings suggest that influenza virus can directly target and kill NK cells, a potential novel strategy of influenza virus to evade the NK cell innate immune defense that is likely to facilitate viral transmission and may also contribute to virus pathogenesis.Influenza is an acute respiratory virus infection that continues to pose endemic, zoonotic, and pandemic threats to human health, with significant morbidity and mortality (17). At the early phase of viral infection, innate immunity plays important roles in host defense by limiting viral replication and helping to initiate an adaptive immune response. Natural killer (NK) cells are key effector cells in innate immunity and play a critical role in the first line of host defense against acute viral infections by directly destroying infected cells without the need for prior antigen stimulation (7, 20). As influenza illness and virus transmission usually occur in the first few days of infection, the virus has to devise strategies to evade host innate immune responses, including NK cell immunity (15, 21).NK cells can recognize and kill influenza virus-infected cells (2, 10, 23); to counteract this killing, however, influenza virus has developed an escape strategy that inhibits NK cell cytotoxicity by increasing the binding of two inhibitory receptors to the infected cells after infection (1). The individuals with complete NK cell deficiency developed life-threatening varicella zoster virus and cytomegalovirus infection, but no severe influenza virus infection occurred (30, 40). Indeed, the interaction between human NK cells and influenza virus remains poorly understood. After influenza virus infection, respiratory epithelial cells release inflammatory chemokines that recruit NK cells to the site of infection (12). As a lytic virus, numerous influenza virus particles are released from the infected epithelia and macrophages (5, 9, 33). In the infected microenvironment, NK cells undoubtedly encounter these infective virus particles. It is therefore important to investigate the direct interaction of NK cells with influenza virus. Patients with severe influenza virus infection were shown to have diminished NK cells in peripheral blood and an almost complete absence of pulmonary NK cells, together with marked apoptosis (13, 42). During influenza virus infection in mice, a transient increase of NK cytotoxicity is followed by a marked decrease in NK cell activity, with a virus dose-dependent effect (8, 28). These data suggest that influenza virus may directly target NK cells as part of its immunoevasion strategies. However, no reports of the direct effects of influenza virus on human NK cells have so far been available.In this study, we demonstrated that influenza virus infects and replicates in primary human NK cells. Viral infection was dependent on sialic acids on the cells. The entry was mediated by both clathrin- and caveolin-dependent endocytosis rather than macropinocytosis. Influenza virus infection induced a marked apoptosis of NK cells, which contributed to reduced NK cell cytotoxicity. This, to the best of our knowledge, is the first paper to demonstrate that influenza virus can directly infect NK cells and induce cell apoptosis. These findings suggest that influenza virus may have developed a novel strategy to evade NK cell innate immune defenses, which is likely to facilitate viral transmission and may also contribute to virus pathogenesis.  相似文献   

11.
Control of infectious disease may be accomplished by successful vaccination or by complex immunologic and genetic factors favoring Ag-specific multicellular immune responses. Using a rhesus macaque model, we evaluated Ag-specific T cell-dependent NK cell immune responses in SIV-infected macaques, designated "controlling" or "noncontrolling" based on long-term chronic viremia levels, to determine whether NK cell effector functions contribute to control of SIV infection. We observed that Gag stimulation of macaque PBMCs induced subset-specific NK cell responses in SIV-controlling but not SIV-noncontrolling animals, as well as that circulatory NK cell responses were dependent on Ag-specific IL-2 production by CD4(+) central memory T cells. NK cell activation was blocked by anti-IL-2-neutralizing Ab and by CD4(+) T cell depletion, which abrogated the Gag-specific responses. Among tissue-resident cells, splenic and circulatory NK cells displayed similar activation profiles, whereas liver and mucosal NK cells displayed a decreased activation profile, similar in SIV-controlling and -noncontrolling macaques. Lack of T cell-dependent NK cell function was rescued in SIV-noncontrolling macaques through drug-mediated control of viremia. Our results indicate that control of disease progression in SIV-controlling macaques is associated with cooperation between Ag-specific CD4(+) T cells and NK cell effector function, which highlight the importance of such cell-to-cell cooperativity in adaptive immunity and suggest that this interaction should be further investigated in HIV vaccine development and other prophylactic vaccine approaches.  相似文献   

12.
Ligands for natural killer (NK) cell activating receptors can be released from tumor cells and are believed to promote tumor growth by acting as decoys for effector lymphocytes. In a recent paper published in Science, Deng et al. report another scenario in which a shed form of the MULT1 mouse NKG2D ligand boosts NK cell functions.Natural killer (NK) cells are cytolytic and cytokine-producing lymphocytes of the innate immune system that participate in the control of tumor growth and microbial infections1. NK cell effector activities are tightly controlled by a fine balance of inhibitory and activating signals delivered by surface receptors. Activating receptors can recognize two types of ligands, self-molecules encoded by the host''s own genome whose expression is upregulated upon cellular stress, or exogenous molecules produced by microbes during infection. NKG2D, one of the best characterized activating receptor expressed by NK and T cells, binds to several different ligands in human and mouse2. NKG2D ligands are poorly expressed on the vast majority of normal cell surfaces, but are upregulated on tumor and virus-infected cells. In addition, NKG2D ligands can be released by both surface cleavage and exosome excretion. It has been reported that shed ligands can block tumor cell recognition by effector cells by preventing NKG2D interaction with its ligands3. However, several reports do not correlate the presence of soluble ligands with decreased NKG2D expression nor functional activities.Deng et al.4 focused their analysis on the NKG2D mouse ligand MULT1, which is commonly overexpressed on primary tumor cells. They first showed that MULT1-transduced fibroblast can cleave MULT1 from the plasma membrane, resulting in a released shed form in the supernatant. Shed MULT1 is of high affinity to NKG2D (∼13 nM) similar to recombinant MULT1. They further reveal the presence of shed MULT1 in the serum of mice developing spontaneous MULT1+ tumors. Interestingly, the authors detected a very high concentration of shed MULT1 in the sera of Apoe−/− mice exhibiting severe atherosclerosis and liver inflammation. Given that these autoimmune injuries observed in this mouse model depend on NKG2D activity5, it was unlikely that shed MULT1 exert an inhibitory effect on immunity.Surprisingly, the authors further showed that mouse tumor cells engineered to release a secreted form of MULT1 (secMULT1) similar to the shed MULT1 were rejected when injected into syngenic mice. Tumor rejection is dependent on NK cells as cells grow in NK but not in CD8+ T cell-depleted host and requires NKG2D. Importantly, the controlled release of secMULT1 from tumors harboring inducible secMULT1 promotes tumor rejection. To rule out the possibility that tumor cell rejection was due to intrinsic modifications of tumor cells, the author monitored the rejection of a mixture of 9:1 secMULT1: secMULT1+ tumor cells and showed an improved antitumoral effect on both secMULT1+ and, importantly, secMULT1 tumors. In addition, direct intratumoral injection of recombinant MULT1 promotes tumor rejection. These results suggested that soluble MULT1 mobilizes or activates anti-tumor effector cells. Deng et al. further reported increased frequencies of cytotoxic and IFN-γ-secreting NK cells associated with secMULT1+ tumors as compared to control tumor cells. Altogether, these data suggest that a shed NKG2D ligand can promote tumor rejection by boosting NK cell effector functions.Shed MULT1 could crosslink NKG2D and thus activate NK cells. However, shed and secMULT1 are monomeric molecules similar to the recombinant MULT1 which fails to activate NK cells in vitro. Formation of multivalent structures in vivo was not detected. In addition, whereas the transmembrane form of MULT1 can activate NK cells by crosslinking NKG2D and induces NKG2D downregulation, soluble MULT1 upregulates NKG2D on the NK cell surface. This upregulation is probably due do a decreased downregulation of NKG2D surface expression because no increase in NKG2D mRNA or protein was observed. Based on these findings, the authors hypothesized that NKG2D ligands expressed on non-tumor host cell membrane continuously engage NKG2D on NK cells, leading to NKG2D downregulation and NK cell desensitization, whereas soluble MULT1 blocks these interactions to increase NK cell responsiveness (Figure 1). Along this line, NK cells from mutant mice genetically deficient for the NKG2D ligand expressed by tumor-associated myeloid cells are not desensitized.Open in a separate windowFigure 1Tumor-associated cells express NKG2DL which can desensitize NK cells. Tumor shedding of MULT1 delivers soluble MULT1 that outcompetes for NKG2D binding and prevents NK cell desensitization. Boosted NK cell functions lead to improved tumor cell rejection by other activating receptors.The induction of cell desensitization by a frequent or even constant stimulation is a very common mechanism across living objects. Regarding NK cells, another example of tuning via desensitization resides in the impact of the long lasting absence of MHC class I molecules in their environment. Indeed, NK cells are hyporesponsive in a MHC-I-deficient host6. There are accumulating data indicating that in the absence of engagement of inhibitory receptors for MHC class I molecules, NK cells get desensitized due to their chronic interaction with endogenous stimulating ligands7. Indeed, in the absence of engagement of this inhibitory pathway, NK cell activation would be unleashed8. This scenario is supported by a series of in vitro and in vivo experiments in which NK cells are desensitized following chronic exposure to stimulatory molecules expressed at the surface of interacting cells9,10. Thus, the induction of MHC class I downregulation or NKG2D ligand upregulation boosts NK cell function, whereas the sustained lack of MHC class I or expression of NKG2D ligands impairs NK cell reactivity. This tuning of immune response as a function of the speed of change of the stimuli detected by lymphocytes is at the center of the recently proposed Discontinuity Theory11.Finally, consistent with their findings with secMULT1 but somewhat counter-intuitively, Deng et al. also show that NKG2D receptor deficiency or blockade using anti-NKG2D monoclonal antibodies mimics the effect of soluble MULT1. Indeed, in both conditions, NK cell effector functions are boosted, resulting in improved tumor rejection. Similarly, blocking other NK activating receptors, such as NKp46, may also lead to NK cell desensitization12. Checkpoint inhibitory receptors are revolutionizing the treatment of cancers by inhibiting the inhibitory receptors. The findings reported by Deng et al. together with earlier results propose alternative strategies of cancer treatment using antibodies that are directed against activating receptors. In the case of NKG2D, the chronic engagement of NK cells with membrane-bound NKG2D ligand affects not only NKG2D-dependent but also NKG2D-independent signaling pathways9. The blockade of NKG2D desensitization by antibodies directed against NKG2D should thus also boost NK cell activation via other pathways, such as antibody-dependent cell cytotoxicity. However, the precise identification of the ligand-receptor pair involved in the control of tumors by NK cells will be a limiting factor to these innovative therapeutic approaches. Indeed, antibodies against activating receptors should be designed to boost NK cell reactivity but should not block the recognition of the tumors by NK cells. Finally, as the tuning of NK cell reactivity by soluble NKG2D ligands depends on their affinity for NKG2D, the pre-clinical development of this new class of drug candidates might reveal novel pharmacokinetics and the pharmacodynamics guidelines.  相似文献   

13.
Summary The present study was undertaken to study natural killer (NK) cell activity in patients with colorectal cancer at peripheral and local levels. Mononuclear cells were isolated from uninvolved colorectal mucosa, tumor tissue and peripheral blood, and tested against the colon carcinoma cell line CaCo-2 and the erythroleukemia cell line K-562. Peripheral blood NK cell activity from the patients showed similar levels compared with healthy controls, whereas, mononuclear cells of tumor tissue were found to have a significantly decreased NK cell activity compared to the normal intestinal mucosa (P<0.01). No relation was found between the NK cell activity and the advancement of the disease according to the Duke's stage. Interferon- (IFN-) stimulated the NK cell activity of the mononuclear cells from blood, mucosa and tumor. However, the increase of NK cell activity after IFN- stimulation was lower in the tumor compared to the mucosa (P<0.02). The lectin, phytohaemagglutinin, increased the cytotoxicity of mononuclear cells from blood, mucosa and tumor to a similar level. These results suggest that patients with colorectal tumors exhibit a normal NK cell activity in peripheral blood and intestinal mucosa; however, a diminished NK cell activity exists at the tumor level. Although mononuclear cells isolated from the tumor have a normal response to lectin stimulation they show hyporesponsiveness to IFN- stimulation with regard to their NK cell activity.  相似文献   

14.
Kijima M  Gardiol N  Held W 《PloS one》2011,6(11):e27639

Background

Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.

Methodology/Principal Findings

Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.

Conclusion

Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.  相似文献   

15.
In addition to lytic activity against malignant and virally transformed target cells, recent evidence has suggested that natural killer (NK) cells can modulate immune activities such as the suppression of B cell responses through noncytotoxic means. Using human B cells and highly purified autologous NK cells, we have demonstrated that NK cells can substantially augment the proliferative responses of B cells stimulated with the surface immunoglobulin crosslinking agents anti-IgM or Staphylococcus aureus Cowan strain I (SAC). This "enhancer" activity of NK cells was quite potent and was observed at an NK:B cell ratio as low as 0.05. Peak blastogenic responses of B cells cocultured with NK cells in the presence of B cell activators were observed at 2-3 days, similar to the responses of B cells in the absence of NK cells. Using the inhibitor of DNA synthesis mitomycin C, we determined that B cells and not NK cells were proliferating in cocultures of these lymphocytes stimulated with SAC. Activated B cells neither prevented the lysis of the isotope-labeled NK-sensitive target cell line K562 nor formed conjugates with NK cells, suggesting that cell contact was not a prerequisite for the effect. These studies have further expanded the functional repertoire of NK cells to include enhancer as well as suppressor and lytic activities.  相似文献   

16.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

17.
NK cells are critical in the early containment of viral infections. Epidemiological and functional studies have shown an important role of NK cells expressing specific killer immunoglobulin-like receptors (KIRs) in the control of human immunodeficiency virus type 1 (HIV-1) infection, but little is known about the mechanisms that determine the expansion of these antiviral NK cell populations during acute HIV-1 infection. Here we demonstrate that NK cells expressing the activating receptor KIR3DS1+ and, to a lesser extent, the inhibitory receptor KIR3DL1+ specifically expand in acute HIV-1 infection in the presence of HLA-B Bw480I, the putative HLA class I ligand for KIR3DL1/3DS1. These data demonstrate for the first time the HLA class I subtype-dependent expansion of specific KIR+ NK cells during an acute viral infection in humans.NK cells are cytotoxic effector cells that play a vital role in the innate immune response to viral infections (9, 12, 33). The critical role of NK cells in acute viral infections has been best characterized in acute murine cytomegalovirus (MCMV) infection (14, 28). While several murine lab strains are resistant to MCMV infection, others are highly susceptible. Resistance to MCMV infection was mapped to a gene encoding an activating NK cell receptor, Ly49H, which has been shown to be critical in the early recognition and control of MCMV infection via the direct recognition of a viral product (M157) expressed on infected cells (28). Remarkably, MCMV-infected mice exhibit a dramatic expansion of NK cells during acute infection, but this expansion is restricted to the specific accumulation of Ly49H+ NK cells (16). Data from these studies suggest that the antiviral activity of the Ly49H+ NK cells is linked to their ability to expand early in infection, prior to the development of adaptive antiviral immunity.While the critical role of Ly49H+ NK cells in MCMV infection has been well established, very little is known about the clonal composition of NK cells that expand in human viral infections, and the NK cell receptors that mediate their antiviral activity. Unlike T cells and B cells, the specificity of NK cells is not determined by a single NK cell receptor (8); rather, NK cells express an array of activating and inhibitory receptors that regulate their activity. While the expression of these receptors is stochastic, the random combinations of different receptors on the surface of a given NK cell clone determine its ability to respond to a specific target cell (26, 27). It has been suggested that individual NK cell populations expressing a specific array of receptors may respond differentially to diverse viral infections (7). This has been further supported by epidemiological studies associating the expression of individual activating or inhibitory NK cell receptors in combination with their HLA class I ligands with better or worse disease outcomes in viral infections such as hepatitis C virus (22), human immunodeficiency virus (HIV) (29, 30), human papillomavirus (11), and CMV (7). The functional basis for this protective immunity mediated by NK cells in human viral infections remains largely unknown.Similar to MCMV infection, highly functional NK cells expand rapidly in acute HIV-1 infection, prior to the induction of adaptive immune responses (2). One particular activating killer immunoglobulin-like NK cell receptor (KIR3DS1), in combination with its putative ligand, an HLA-B allele with isoleucine at position 80 (HLA-B Bw480I), has been shown to be associated with slower HIV-1 disease progression (29). We have recently shown that KIR3DS1+ NK cells can effectively suppress HIV-1 replication in HLA-B Bw480I+ target cells in vitro (1). Furthermore, a subset of inhibitory alleles from the same locus, KIR3DL1, that show high cell surface expression levels have similarly been associated with slower disease progression toward AIDS in the presence of their ligand, HLA-B Bw480I (30). These data suggest that both KIR3DS1+ and KIR3DL1+ NK cells may play a critical role in the control of natural HIV-1 infection, depending on the interaction with their ligand on infected cells (4). However, the mechanisms underlying their protective role are not understood.Given the critical role of NK cells in acute viral infections and the described expansion of NK cells overall during acute HIV-1 infection (16), we assessed clonal NK cell expansions during acute HIV-1 infection by quantitative PCR and flow cytometric analysis. Here we report an HLA class I subtype-dependent specific expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute HIV-1 infection. These data demonstrate for the first time the impact of the HLA class I ligands on clonal NK cell expansions during an acute human viral infection.  相似文献   

18.
Summary Natural killer (NK) cells are important in surveillance against malignant cells. The activity of NK cells can be modulated by naturally occurring mediators; interferon, interleukin-2, and hormones. Low-dose aminoglutethimide (Ag 250 mg/day) inhibits the peripheral aromatization of androstenedione hence decreasing circulating estrogens. Of ten patients treated, seven were evaluable. There was a statistically significant increase in NK activity (P=0.0025) following the administration of Ag. There was no consistent shift in NK cell number (Leu-11b positive cells). In vitro Ag did not alter NK activity whereas 17--estradiol did. These data are consistent with an indirect effect of Ag on NK activity. Hence in vivo Ag which causes a reduction in serum estrogens in postmenopausal patients, also induces an increase in NK activity.  相似文献   

19.
Natural killer (NK) cells are associated with the innate immune response and are important in many viral infections. Recent studies indicate that NK cells can control human immunodeficiency virus type 1 (HIV-1) replication. We studied the effect of NK cells on HIV-1 replication in a subpopulation of HIV-1-infected individuals termed elite suppressors (ES) or elite controllers. These patients maintain a clinically undetectable viral load without treatment and thus provide a fascinating cohort in which to study the immunological response to HIV-1. Using an autologous system, we analyzed the effects of NK cells and CD8+ T cells on viral replication in CD4+ T lymphoblasts. Although we had postulated that NK cells of ES would be highly effective at controlling viral replication, we found that NK cells from some, but not all, ES were capable of inhibiting replication in the presence of interleukin-2, and the inhibition was less robust than that mediated by CD8+ T cells. Additionally, we examined whether particular alleles of the KIR receptors, specifically KIR3DS1 and KIR3DL1, or allele-ligand combinations correlated with the control of HIV-1 replication by NK cells and whether any specific KIR alleles were overrepresented in ES. Our ES cohort did not differ from the general population with respect to the frequency of individual KIR. However, of the eight ES studied, the four exhibiting the most NK cell-mediated control of viral replication also had the fewest activating KIR and were haplotype A. Thus, the strong NK cell-mediated inhibition of viral replication is not necessary for the immunological control of HIV-1 in all ES.A small subset of untreated, human immunodeficiency virus type 1 (HIV-1)-infected individuals referred to as elite suppressors (ES) control viremia to levels that are undetectable by ultrasensitive commercial assays while maintaining high CD4+ T-cell counts (13, 37). While defective virus has been shown to account for the control of virus in some patients, examining multiple host factors in ES with replication-competent virus (9) already has provided critical information on the immune response to HIV-1 and may yield important insights into future therapies and vaccine development.Research on ES suggests that CD8+ T cells play a crucial role in an effective response to HIV-1. CD8+ T cells from ES are capable of controlling viral replication in autologous CD4+ T cells significantly better than CD8+ T cells from progressors (36), and only the former proliferate (29) and secrete multiple cytokines (8) in response to HIV-1 antigens. Furthermore, certain class I HLA alleles, such as HLA-B*27 and HLA-B*57, which appear to be important in the cytotoxic T-lymphocyte (CTL) response, are overrepresented in ES (15, 19, 21, 30, 32). A second, less well studied cytotoxic cell also may play a role in the control of HIV-1. Natural killer (NK) cells are part of the innate immune system and are an important component of the host response to many viral infections. They act on target cells via cytokine release and cytolysis in response to the integration of signals from inhibitory and activating receptors.The striking propensity of HIV-1 to evolve rapidly in response to immunologic or pharmacologic pressure suggests that the virus has the capability to evade the NK cell response, and indeed selection for evasive measures seems to have occurred. The virus-induced downregulation of HLA-A and -B molecules on infected cells provides some protection against the CTL response; at the same time, however, HLA-C molecules are not downregulated upon infection (12). NK cell interaction with HLA-C can inhibit NK cytotoxic effects, and thus the retention of HLA-C on infected cells can provide some protection against the NK cell response. Additionally, a variety of alterations in NK cell function have been observed during HIV-1 infection. NK cells of patients with chronic HIV-1 have altered phenotypes and effector capabilities: NK cells from viremic patients have an increased expression of inhibitory receptors, and there is an expansion of the defective CD56 NK cells compared to the levels in patients on highly active antiretroviral therapy or in ES (7, 27). These changes may be due to alterations in the cytokine environment during infection, which can affect the activation of the NK cells (39); they also may be due to direct interactions between HIV-1 gene products and the NK cells (20). Although the precise cause is unknown, the result is the development of defective NK cells that express an altered receptor and NK cell marker phenotype.Studies specifically examining a role for NK cells in the response to HIV-1 have yielded conflicting results. During acute HIV-1 infection, the NK cell population is activated and expands, particularly the cytotoxic CD56dim population (2, 3). This activation declines in the chronic phase, and at least one study suggests that the drop in the viral load (VL) of patients during acute infection occurs before the CD8+ T-cell response is fully activated; this could be attributed to the effect of NK cells (2). At the same time, the study of exposed, uninfected individuals shows a correlation between resistance to acquiring HIV-1 infection and NK cell activation levels, cytokine release, and cytotoxicity to NK cell-sensitive cell lines (33, 38). Additionally, a recent whole-genome association study identified three single-nucleotide polymorphisms that appear to be important for the host control of HIV-1 (16). Two of these may have an impact on NK cell function, one that is associated with HLA-B*57 and a second that correlates with higher HLA-C mRNA expression. Taken together, such data suggest that NK cells are important for preventing HIV-1 infection and/or reducing the magnitude of viral replication in acute infection, thereby contributing to the ability of ES to control viremia.In this study, we provide the first characterization of NK cells in patients who naturally control HIV-1 infection. Considering that the effectiveness of CD8+ T cells against viral replication is well documented, we directly compared the effect of NK cells to that of CD8+ T cells from ES on viral replication to put the effect of NK cells in perspective. We studied the NK cell response by measuring the change in p24 production when autologous effector cell populations were coincubated with infected CD4+ lymphoblasts with and without the addition of interleukin-2 (IL-2). Additionally, we examined the killer immunoglobulin-like receptors (KIR) and KIR ligand genotype of ES patients to determine whether any KIR are overrepresented in ES and whether KIR-ligand combinations correlated with the HIV-1 inhibitory activity of the NK cells from specific patients. Previous studies have identified correlations between the expression of certain KIR and progression to AIDS in chronic progressors (25, 26); however, a connection between KIR, KIR ligands, and the control of HIV-1 has yet to be identified in ES. The results of these studies significantly advance the understanding of the nature of NK cells and of their potential role in reducing HIV-1 replication.  相似文献   

20.
Paclitaxel, a semisynthetic taxane, is one of the most active chemotherapeutic agents for the treatment of patients with breast cancer. We focused on the effect of paclitaxel on the cytotoxicity of natural killer (NK) cells. NK cells were purified by negative selection with magnetic beads from peripheral blood mononuclear cells of healthy volunteers. A human breast carcinoma cell line BT-474 and an NK cell–sensitive erythroleukemia cell line K562 were used as targets. Cytotoxicity of NK cells was determined by 51Cr-release assay with labeled target cells. Paclitaxel (1–100 nM) did not affect cellular viability, and significantly enhanced cytotoxicity of NK cells in a dose-dependent manner. Although paclitaxel did not affect Fas-ligand expression of NK cells, paclitaxel induced mRNA and protein production of perforin, an effector molecule in NK cell–mediated cytotoxicity. Concanamycin A, a potent inhibitor of the perforin-mediated cytotoxic pathway, inhibited paclitaxel-dependent NK cell–mediated cytotoxicity. Furthermore, paclitaxel induced activation of nuclear factor B (NF-B) in NK cells. NF-B inhibitor pyrrolidine dithiocarbamate significantly suppressed both paclitaxel-induced perforin expression and NK cell cytotoxicity. Our results show for the first time that paclitaxel enhances in vitro cytotoxicity of human NK cells. Moreover, our results suggest a significant association between enhanced NK cell cytotoxicity, increased perforin production, and NF-B activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号