首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have implicated inhibitor of kappaB kinase (IKK) in mediating fatty acid (FA)-induced insulin resistance. How IKK causes these effects is unknown. The present study addressed the role of nuclear factor kappaB (NFkappaB), the distal target of IKK activity, in FA-induced insulin resistance in L6 myotubes, an in vitro skeletal muscle model. A 6-h exposure of myotubes to the saturated FA palmitate reduced insulin-stimulated glucose uptake by approximately 30%, phosphatidylinositol-3 kinase and protein kinase B phosphorylation by approximately 40%, and stimulated inhibitor of kappaBalpha degradation and the nuclear translocation of NFkappaB. On the other hand, the Omega-3 polyunsaturated FA linolenate neither induced insulin resistance nor promoted nuclear localization of NFkappaB. Supporting the hypothesis that IKK acts through NFkappaB to cause insulin resistance, the IKK inhibitors acetylsalicylate and parthenolide prevented FA-induced reductions in insulin-stimulated glucose uptake and NFkappaB nuclear translocation. Most importantly, NFkappaB SN50, a cell-permeable peptide that inhibits NFkappaB nuclear translocation downstream of IKK, was sufficient to prevent palmitate-induced reductions in insulin-stimulated glucose uptake. Acetylsalicylate, but not NFkappaB SN50, prevented FA effects on phosphatidylinositol-3 kinase activity and protein kinase B phosphorylation. We conclude that FAs induce insulin resistance and activates NFkappaB in L6 cells. Furthermore, inhibition of NFkappaB activation, indirectly by preventing IKK activation or directly by inhibiting NFkappaB nuclear translocation, prevents the detrimental effects of palmitate on the metabolic actions of insulin in L6 myotubes.  相似文献   

2.
The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation is raised by increasing glucose concentrations (0-20 mmol/l) and acute insulin stimulation (P < 0.05), whereas it is inhibited by palmitate (PA). PA oxidation is raised by increasing PA concentrations (0-0.6 mmol/l), whereas 1.0 mmol/l PA inhibits its own oxidation (P < 0.05). Furthermore, PA oxidation is increased by acute insulin stimulation (P < 0.05) and inhibited by glucose. Even 0.05 mM PA and 2.5 mM glucose significantly reduce glucose and PA oxidation (P < 0.05), respectively. Glucose and PA oxidation are insulin-sensitive in myotubes established from lean (46% and 17% glucose and PA oxidation, respectively; P < 0.05 vs. basal), obese (31% and 14%; P < 0.05), and T2D (17% and 8%; P < 0.05) subjects. PA supplementation reduces both basal and insulin-stimulated glucose oxidation by 33-44% (P < 0.05), and myotubes are still insulin-sensitive in all three groups (P < 0.05). Therefore, the metabolic inflexibility described in obese and diabetic patients is not an intrinsic defect; rather, it is based on an extramuscular mechanism (i.e., the inability to vary extracellular fatty acid concentrations during insulin stimulation). Thus, skeletal muscles are metabolic-flexible per se.  相似文献   

3.
The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.  相似文献   

4.

Background

The objective of this study was to examine the effects of short (2 h) and prolonged (18 h) inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate (PA) induced insulin resistance in L6 myotubes.

Methods

L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor) or PA and Ski II (SphK1inhibitor) for different time periods (2 h and 18 h). Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA), ceramide (CER), sphingosine (SFO), sphingosine-1-phosphate (S1P)] were estimated by HPLC.

Results

Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio) in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes.

Conclusion

Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor). Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.  相似文献   

5.
目的:观察口服葡萄糖负荷对小鼠小肠组织网膜素基因表达的影响及网膜素对C2C12肌管细胞胰岛素敏感性的影响,并进一步探讨其机制。方法:半定量逆转录聚合酶链反应(RT-PCR)技术检测小鼠小肠组织网膜素mRNA的表达;葡萄糖转运实验观察网膜素对C2C12肌管细胞胰岛素敏感性的影响;Western blot检测Akt(Ser473)的磷酸化水平。结果:口服葡萄糖负荷30min后小鼠小肠组织网膜素基因表达显著减低(P<0.05),而60min后恢复至负荷前水平;葡萄糖转运实验发现:网膜素作用10min对C2C12肌管细胞基础葡萄糖转运无影响,但显著增加了胰岛素刺激的葡萄糖转运(P<0.05);Western Blot发现:网膜素和AICAR均显著增加了C2C12肌管细胞Ak(tSer473)的磷酸化水平(P<0.05)。结论:网膜素作为一种胃肠激素还受到葡萄糖负荷的调节,在C2C12肌管细胞,网膜素可通过增加Akt的磷酸化发挥胰岛素增敏作用。  相似文献   

6.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

7.
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate would impair insulin signaling and glucose transport in isolated human skeletal muscle, 2) whether muscle from obese humans is more susceptible to the effects of palmitate, and 3) whether the presence of 2 mM palmitate + 2.5 mug/ml gAd (P+gAd) could prevent the effects of palmitate. Insulin-stimulated (10 mU/ml) glucose transport was not different, relative to control, following exposure to palmitate (-10%) or P+gAd (-3%) in lean muscle. In obese muscle, the absolute increase in glucose transport from basal to insulin-stimulated conditions was significantly decreased following palmitate (-55%) and P+gAd (-36%) exposure (control vs. palmitate; control vs. P+gAd, P < 0.05). There was no difference in the absolute increase in glucose transport between palmitate and P+gAd, indicating that in the presence of palmitate, gAd did not improve glucose transport. The palmitate-induced reduction in insulin-stimulated glucose transport in muscle from obese individuals may have been due to reduced Ser Akt (control vs. palmitate; P+gAd, P < 0.05) and Akt substrate 160 (AS160) phosphorylation (control vs. palmitate; P+gAd, P < 0.05). FA oxidation was significantly increased in muscle of lean and obese individuals in the presence of gAd (P < 0.05), suggesting that the stimulatory effects of gAd on FA oxidation may not be sufficient to entirely prevent palmitate-induced insulin resistance in obese muscle.  相似文献   

8.
Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P < 0.01) and significantly increased ceramide, DAG, and TAG accumulation in the SED group (P < 0.05). A single prior bout of exercise prevented the detrimental effects of palmitate on insulin signaling and caused a partial redistribution of FA toward TAG (P < 0.05). However, the net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content.  相似文献   

9.
High-fat (HF) diets induce insulin resistance and alter lipid metabolism, although controversy exists regarding the impact of saturated vs. polyunsaturated fats. Adiponectin (Ad) stimulates fatty acid (FA) oxidation and improves insulin sensitivity in humans and rodents, due in part to the activation of AMP-activated protein kinase (AMPK) and subsequent deactivation of acetyl coenzyme A carboxylase (ACC). In genetically obese, diabetic mice, this acute stimulatory effect on AMPK in muscle is lost. The ability of a HF diet to induce skeletal muscle Ad resistance has not been examined. The purpose of this study was to determine whether Ad's effects on FA oxidation and AMPK/ACC would be reduced following different HF diets, and if this coincided with the development of impaired maximal insulin-stimulated glucose transport. Rats were fed a control (10% kcal fat, CON), high unsaturated fat (60% kcal safflower oil, SAFF), or high saturated fat diet (60% kcal lard, LARD) for 4 wk. Following the dietary intervention, glucose transport, lipid metabolism, and AMPK/ACC phosphorylation were measured in the presence and absence of globular Ad (gAd, 2.5 microg/ml) in isolated soleus muscle. LARD rats showed reduced rates of maximal insulin-stimulated glucose transport compared with CON and SAFF (+68 vs. +172 and +184%, P < or = 0.001). gAd increased pACC (+25%, P < or = 0.01) and FA oxidation (+28%, P < or = 0.05) in CON rats, but not in either HF group. Thus 4 wk of HF feeding results in the loss of gAd stimulatory effect on ACC phosphorylation and muscle FA oxidation, and this can occur independently of impaired maximal insulin-stimulated glucose transport.  相似文献   

10.
The mechanisms of free fatty acid (FFA)-induced peripheral insulin resistance remain elusive. This study aimed to investigate the effect of palmitate, a saturated fatty acid, on glucose metabolism in C2C12 myotubes, and to explore the underlying mechanisms. In it, palmitate decreased insulin-stimulated glucose uptake and consumption in a dose-dependent manner, and it reduced the insulin-stimulated phosphorylation of Akt at Thr308 and Ser473, but had no effect on the protein expression of PI3K-p85 or the activity of PI3K. Additionally, it inhibited the insulin-stimulated phosphorylation of Src at Tyr416, causing a reduction in the Src-mediated phosphorylation of Akt. Inhibition of Src by PP2 resulted in decreases in insulin-stimulated glucose uptake and phosphorylation of Src at Tyr416 and Akt at Thr308 and Ser473. The findings indicate that palmitate contributes to insulin resistance by inhibiting the Src-mediated phosphorylation of Akt in C2C12 myotubes, and this provides insight into the molecular mechanisms of FFA-induced insulin resistance.  相似文献   

11.
The mechanisms of free fatty acid (FFA)-induced peripheral insulin resistance remain elusive. This study aimed to investigate the effect of palmitate, a saturated fatty acid, on glucose metabolism in C2C12 myotubes, and to explore the underlying mechanisms. In it, palmitate decreased insulin-stimulated glucose uptake and consumption in a dose-dependent manner, and it reduced the insulin-stimulated phosphorylation of Akt at Thr308 and Ser473, but had no effect on the protein expression of PI3K-p85 or the activity of PI3K. Additionally, it inhibited the insulin-stimulated phosphorylation of Src at Tyr416, causing a reduction in the Src-mediated phosphorylation of Akt. Inhibition of Src by PP2 resulted in decreases in insulin-stimulated glucose uptake and phosphorylation of Src at Tyr416 and Akt at Thr308 and Ser473. The findings indicate that palmitate contributes to insulin resistance by inhibiting the Src-mediated phosphorylation of Akt in C2C12 myotubes, and this provides insight into the molecular mechanisms of FFA-induced insulin resistance.  相似文献   

12.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

13.
Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.  相似文献   

14.
In cultured cells, palmitic acid (PA) and oleic acid (OA) confer distinct metabolic effects, yet, unclear, is whether changes in dietary fat intake impact cellular fatty acid (FA) composition. We hypothesized that short‐term increases in dietary PA or OA would result in corresponding changes in the FA composition of skeletal muscle diacylglycerol (DAG) and triacylglycerol (TAG) and/or the specific FA selected for β‐oxidation. Healthy males (N = 12) and females (N = 12) ingested a low‐PA diet for 7 days. After fasting measurements of the serum acylcarnitine (AC) profile, subjects were randomized to either high‐PA (HI PA) or low‐PA/high‐OA (HI OA) diets. After 7 days, the fasting AC measurement was repeated and a muscle/fat biopsy obtained. FA composition of intramyocellular DAG and TAG and serum AC was measured. HI PA increased, whereas HI OA decreased, serum concentration of 16:0 AC (P < 0.001). HI OA increased 18:1 AC (P = 0.005). HI PA was associated with a higher PA/OA ratio in muscle DAG and TAG (DAG: 1.03 ± 0.24 vs. 0.46 ± 0.08, P = 0.04; TAG: 0.63 ± 0.07 vs. 0.41 ± 0.03, P = 0.01). The PA concentration in the adipose tissue DAG (µg/mg adipose tissue) was 0.17 ± 0.02 in those receiving the HI PA diet (n = 6), compared to 0.11 ± 0.02 in the HI oa group (n = 4) (P = 0.067). The relative PA concentration in muscle DAG and TAG and the serum palmitoylcarnitine concentration was higher in those fed the high‐PA diet.  相似文献   

15.
This study was conducted to evaluate the chronic effects of eicosapentaenoic acid (EPA) on fatty acid and glucose metabolism in human skeletal muscle cells. Uptake of [14C]oleate was increased >2-fold after preincubation of myotubes with 0.6 mM EPA for 24 h, and incorporation into various lipid classes showed that cellular triacylgycerol (TAG) and phospholipids were increased 2- to 3-fold compared with control cells. After exposure to oleic acid (OA), TAG was increased 2-fold. Insulin (100 nM) further increased the incorporation of [14C]oleate into all lipid classes for EPA-treated myotubes. Fatty acid beta-oxidation was unchanged, and complete oxidation (CO2) decreased in EPA-treated cells. Basal glucose transport and oxidation (CO2) were increased 2-fold after EPA, and insulin (100 nM) stimulated glucose transport and oxidation similarly in control and EPA-treated myotubes, whereas these responses to insulin were abolished after OA treatment. Lower concentrations of EPA (0.1 mM) also increased fatty acid and glucose uptake. CD36/FAT (fatty acid transporter) mRNA expression was increased after EPA and OA treatment compared with control cells. Moreover, GLUT1 expression was increased 2.5-fold by EPA, whereas GLUT4 expression was unchanged, and activities of the mitogen-activated protein kinase p38 and extracellular signal-regulated kinase were decreased after treatment with OA compared with EPA. Together, our data show that chronic exposure of myotubes to EPA promotes increased uptake and oxidation of glucose despite a markedly increased fatty acid uptake and synthesis of complex lipids.  相似文献   

16.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

17.
Essential hypertension is associated with an increased incidence of insulin resistance of skeletal muscle glucose transport. The present study determined if celiprolol, an antihypertensive agent with selective beta1-adrenoceptor antagonist and additional beta2-agonistic properties, administered by gavage either acutely (3 hr) or chronically (14 d), had a direct effect on improving glucose tolerance and insulin-stimulated glucose transport activity (using 2-deoxyglucose (2-DG) uptake) in isolated epitrochlearis muscles of the insulin-resistant obese Zucker rat. The effects of a selective beta1-blocker, metoprolol, were also assessed. Acute administration of celiprolol, but not metoprolol, increased insulin-stimulated 2-DG uptake in muscle by 22% (p<0.05). Chronic celiprolol treatment significantly lowered fasting plasma insulin (22%) and free fatty acids (40%) in comparison to obese control values. Moreover, chronic celiprolol administration decreased the glucose-insulin index (calculated as the product of the glucose and insulin areas under the curve during an oral glucose tolerance test), by 32% (p<0.05) compared to obese controls, indicating that peripheral insulin action was increased. Indeed, insulin-stimulated skeletal muscle 2-DG uptake was enhanced by 49% (p<0.05) in these celiprolol-treated obese animals. Metoprolol was without significant effect on any of these variables following chronic administration. These findings indicate that, in this animal model of insulin resistance, the beta1-antagonist/beta2-agonist celiprolol has a specific effect of improving insulin-stimulated skeletal muscle glucose transport that is independent of any hemodynamic alterations.  相似文献   

18.
In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms of these metabolic malfunctions, we studied mitochondrial respiration, uncoupled respiration and oxidative enzyme activities (citrate synthase (CS), 3-hydroxy-acyl-CoA-dehydrogenase activity (HAD)) before and after acute exposure to insulin and/or palmitate in myotubes established from healthy lean and obese subjects and T2D patients. Basal CS activity was lower (14%) in diabetic myotubes compared with myotubes from lean controls (P=0.03). Incubation with insulin (1 microM) for 4 h increased the CS activity (26-33%) in myotubes from both lean (P=0.02) and obese controls (P<0.001), but not from diabetic subjects. Co-incubation with palmitate (0.6 mM) for 4 h abolished the stimulatory effect of insulin on CS activity in non-diabetic myotubes. No differences were detected in mitochondrial respiration and HAD activity between myotubes from non-diabetic subjects and T2D patients, and none of these measures responded to high levels of insulin and/or palmitate. These results provide evidence for an intrinsic defect in CS activity, which may play a role in the pathogenesis of T2D. Moreover, the data suggest that insulin resistance at the CS level can be induced by exposure to high free fatty acid levels.  相似文献   

19.
Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.  相似文献   

20.
Yin  Qiong  Brameld  John M.  Parr  Tim  Murton  Andrew J. 《Amino acids》2020,52(3):477-486

Chronic mTORc1 hyperactivation via obesity-induced hyperleucinaemia has been implicated in the development of insulin resistance, yet the direct impact of leucine on insulin-stimulated glucose uptake in muscle cells remains unclear. To address this, differentiated L6 myotubes were subjected to various compounds designed to either inhibit mTORc1 activity (rapamycin), blunt leucine intracellular import (BCH), or activate mTORc1 signalling (3BDO), prior to the determination of the uptake of the glucose analogue, 2-deoxyglucose (2-DG), in response to 1 mM insulin. In separate experiments, L6 myotubes were subject to various media concentrations of leucine (0–0.8 mM) for 24 h before 2-DG uptake in response to insulin was assessed. Both rapamycin and BCH blunted 2-DG uptake, irrespective of insulin administration, and this occurred in parallel with a decline in mTOR, 4E-BP1, and p70S6K phosphorylation status, but little effect on AKT phosphorylation. In contrast, reducing leucine media concentrations suppressed 2-DG uptake, both under insulin- and non-insulin-stimulated conditions, but did not alter the phosphorylation state of AKT-mTORc1 components examined. Unexpectedly, 3BDO failed to stimulate mTORc1 signalling, but, nonetheless, caused a significant increase in 2-DG uptake under non-insulin-stimulated conditions. Both leucine and mTORc1 influence glucose uptake in muscle cells independent of insulin administration, and this likely occurs via distinct but overlapping mechanisms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号